strengthening the materials core of manufacturing enterprises

Posts in Category: 'Toys/Sporting Goods'


A Standardized Mechanism to Validate Crash Models for Ductile Plastics

Quantifying simulation accuracy before running crash simulations could be a helpful confidence building measure. This study continues our development of a mechanism to validate material models for plastics used in modeling high-speed impact. Focusing on models for isotropic materials that include options for rate dependency and failure, we explore other models commonly used for ductile plastics including MAT089 and MAT187.

...read full post

Mechanical Plastics Rate Dependency Yielding/Failure analysis Automotive Toys/Sporting Goods Packaging High Speed Testing LS-DYNA Research Papers Validation


Using an Intermediate Validation Step to Increase CAE Confidence

Simulations contain assumptions and uncertainties that a designer must evaluate to obtain a measure of accuracy. The assumptions of the product design can be differentiated from the ones for the solver and material model through the use of a mid-stage validation. An open loop validation uses a controlled test on a standardized part to compare results from a simulation to the physical experiment. From the validation, confidence in the material model and solver is gained. In this study, the material properties of a polypropylene are tested to characterize for an *ELASTIC *PLASTIC model in ABAQUS. A validation of a quasi-static three-point bending experiment of a parallel ribbed plate is then performed and simulated. A comparison of the strain fields resulting from the complex stress state on the face of the ribs obtained by digital image correlation (DIC) vs. simulation is used to quantify the simulation's fidelity.

...read full post

Plastics Plasticity Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Furniture Packaging Home Appliances Nonlinear Material Models Structural Analysis Abaqus Research Papers Validation


Providing an Experimental Basis in Support of FEA 

The use of CAE in design decision-making has created a need for proven simulation accuracy. The two areas where simulation touches the ground are with material data and experimental verification and validation (V&V). Precise, well designed and quantitative experiments are key to ensure that the simulation initiates with correct material behavior. Similar validation experiments are needed to verify simulation and manage the risk associated with this predictive technology.

...read full post

Plastics Rubbers Foams Metals Automotive Biomedical Building Materials Consumer Products Energy and Petroleum Material Supplier Toys/Sporting Goods Electonics/Electrical Industrial Goods CAE Vendor/Supplier Mold Maker/Designer Nonlinear Material Models Structural Analysis Abaqus Composites SIMULIA Presentations


The Use of Digital Image Correlation (DIC) and Strain Gauges to Validate Simulation 

As part of Cornell University's mechanical engineering curriculum and study of classical beam theory, an aluminium beam is deformed to a specific load. Theoretical strains are calculated at certain points along the beam using beam theory, and then verified by using strain gauges placed at these points on the beam. This experiment is then extended to simulation of the same test setup in simulation software, where strains are analyzed at the same points. Discrepancies between the simulation, theory, and strain gauge results have often plagued the test, especially when incorporating more complex beam design. Through use of digital image correlation (DIC) it is possible to pinpoint some of the problem areas in the beam analysis and provide a better understanding of the localized strains that occur at any point in the deformed beam. The use of DIC provides a full field validation of simulation data, rather than a single spot check that strain gauges can provide. This validation technique helps to eliminate error that is associated with strain gauge placement and the possibility of missing strain hot spots that can arise when analyzing complex deformations or geometries.

...read full post

Plastics Metals Aerospace and Defense Automotive Biomedical Building Materials Consumer Products Material Supplier Toys/Sporting Goods Electonics/Electrical Industrial Goods CAE Vendor/Supplier Mold Maker/Designer Structural Analysis ANSYS Presentations


Understanding and Coping with Material Modeling Limitations in FEA 

The limitations of modeling materials for simulation are discussed, including lack of clarity in material model requirements, gaps between the material data and the model to which it will be fitted, issues in obtaining pertinent properties, difficulties in parameter conversion (fitting), and preparation of input files for the software being used. Means to address these limitations are presented, including understanding the model completely, measuring the correct data with precision on the right material, selecting the best model for the data and ensuring the best fit of the model to the data, validating the model against a simple experiment, and following best practices to create an error-free input file.

...read full post

Plastics Rubbers Foams Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Electonics/Electrical Industrial Goods Packaging Home Appliances Presentations


Simulating Plastics in Drop and Crash Tests 

If you want a crash simulation involving plastics to yield useful results, it is important to model the material behavior appropriately. The high strain rates have a significant effect on the properties, and failure can be ductile or brittle in nature, depending on a number of factors.

...read full post

Plastics Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Industrial Goods Packaging High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH RADIOSS Research Papers


Characterization and Modeling of Non-linear Behavior of Plastics 

A considerable amount of CAE today is devoted to the simulation of non-metallic materials, many of which exhibit non-linear behavior. However, most material models to date are still based on metals theory. This places severe restrictions on the proper description of their behavior in CAE. In this paper, we describe non-linear elastic behavior and its interrelationship with plastic behavior in plastics. Special attention is given to the differentiation between visco-elastic (recoverable) strain and plastic (non-recoverable) strain. The goal of this work is to have a material model for plastics that can describe both loading and unloading behavior accurately and provide an accurate measure of damage accumulation during complex loading operations.

...read full post

Plastics Rubbers Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Packaging Home Appliances Nonlinear Material Models Structural Analysis Abaqus Research Papers


A Novel Technique to Measure Tensile Properties of Plastics at High Strain Rates

High strain-rate properties have many applications in the simulation of automotive crash and product drop testing. These properties are difficult to measure. These difficulties result from inaccuracies in extensometry at high strain rates due to extensometer slippage and background noise due to the sudden increase in stress at the start of the test. To eliminate these inaccuracies we use an inferential technique that correlates strain to extension at low strain rates and show that this can be extended to measure strain at higher strain rates

...read full post

Mechanical Plastics Rate Dependency Aerospace and Defense Automotive Consumer Products Material Supplier Toys/Sporting Goods Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH Research Papers


High Speed Stress Strain Material Properties as Inputs for the Simulation of Impact Situations

With the recent changes in the crashworthiness requirements for US automobiles for improved safety, design engineers are being challenged to design interior trim systems comprised of polymeric materials to meet these new impact requirements. Impact analysis programs are being used increasingly by designers to gain an insight into the final part performance during the design stage. Material models play a crucial role in these design simulations by representing the response of the material to an applied stimulus. In this work, we seek to develop novel test methods to generate high speed stress-strain properties of plastics, which can be used as input to structural analysis programs...

...read full post

Plastics Metals Aerospace and Defense Material Supplier Toys/Sporting Goods Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis Thermoforming LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH Research Papers

Contributors