strengthening the materials core of manufacturing enterprises

Posts in Category: 'Hyperelastic'


The Role of Materials in Simulation-Driven Product Development

DatapointLabs Technical Center for Materials has a mission to strengthen the materials core of manufacturing enterprises by facilitating the use of new materials, novel manufacturing processes, and simulation-based product development. A whole-process approach is needed to address the role of materials in this context.

...read full post

Mechanical Plastics Rubbers Metals Hyperelastic Nonlinear Material Models Structural Analysis ANSYS Validation 3D Printing Matereality Materials Information Management


Datapoint Newsletter: Winter '17, Volume 23.1

New test capabilities, Matereality v10.2, upcoming presentations

...read full post

Mechanical Plastics Rubbers Hyperelastic Visco-elastic Rate Dependency High Speed Testing Structural Analysis Composites Newsletters Validation


Datapoint Newsletter: Fall '16, Volume 22.4

CAETestBench Validations; Matereality Enterprise Workflows; Latest Publications Available on Knowmats

...read full post

Plastics Rubbers Metals Hyperelastic Plasticity Rate Dependency Automotive Nonlinear Material Models LS-DYNA Abaqus ANSYS RADIOSS Newsletters Validation 3D Printing


Workshop: Testing, Modeling and Validation for Plastics & Rubber Simulation in ANSYS

Plastics exhibit non-linear viscoelastic behavior followed by a combination of deviatoric and volumetric plastic deformation until failure. Capturing these phenomena correctly in simulation presents a challenge because of limitations in commonly used material models. We follow an approach where we outline the general behavioral phenomena, then prescribe material models for handling different phases of plastics deformation. Edge cases will then be covered to complete the picture. Topics to be addressed include: Using elasto-plasticity; When to use hyperelasticity; Brittle polymers – filled plastics; Failure modes to consider; Criteria for survival; Choosing materials; Spatial non-isotropy from injection molding; Importance of residual stress; Visco-elastic and creep effects; Strain-rate effects for drop test and crash simulations; Fitting material data to FEA material models; The use of mid-stage validation as a tool to confirm the quality of simulation before use in real-life applications.

...read full post

Density Rheology Thermal Mechanical Plastics Rubbers Hyperelastic Visco-elastic Plasticity Rate Dependency Yielding/Failure analysis Injection Molding Structural Analysis ANSYS Presentations Validation


A Mechanism for the Validation of Hyperelastic Materials in ANSYS

Hyperelastic material models are complex in nature requiring stress-strain properties in uniaxial, biaxial and shear modes. The data need to be self-consistent in order to fit the commonly used material models. Choosing models and fitting this data to these equations adds additional uncertainty to the process. We present a validation mechanism where, using of a standard validation experiment one can compare results from a simulation and a physical test to obtain a quantified measure of simulation quality. Validated models can be used with greater confidence in the design of real-life components.

...read full post

Mechanical Hyperelastic Structural Analysis ANSYS Papers Presentations Validation


Determination and Use of Material Properties for Finite Element Analysis: Book Review

This book is intended to be a companion to the NAFEMS book, "An Introduction to the Use of Material Models in FE". It informs Finite Element Analysis users of the manner and methodologies by which materials are tested in order to calibrate material models currently implemented in various FEA programs. While the authors seek first to satisfy the basic material models outlined in the companion book, they make important extensions to FEA used in currently active areas including explicit simulation.

...read full post

Mechanical Plastics Rubbers Foams Metals Hyperelastic Visco-elastic Plasticity Rate Dependency Yielding/Failure analysis Aerospace and Defense Automotive Biomedical Building Materials Consumer Products Energy and Petroleum Material Supplier Furniture Industrial Goods CAE Vendor/Supplier Packaging Home Appliances Research Laboratory High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS DIGIMAT SOLIDWORKS MSC.DYTRAN MSC.MARC MSC.NASTRAN NX Nastran PAM-COMFORT PAM-CRASH RADIOSS SIMULIA Book Review


A Simplified Approach for Strain-Rate Dependent Hyperelastic Materials with Damage

"Simulation of rubber-like materials is usually based on hyperelasticity. If strain-rate dependency has to be considered viscous dampers are added to the rheological model. A disadvantage of such a description is timeconsuming parameter identification associated with the damping constants. In this paper, a tabulated formulation is presented which allows fast generation of input data based on uniaxial static and dynamic tensile tests at different strain rates. Unloading, i.e. forming of a hysteresis, can also be modeled easily based on a damage formulation. We show the theoretical background and algorithmic setup of our model which has been implemented in the explicit solver LS-DYNA [1]-[3]. Apart from purely numerical examples, the validation of a soft and a hard rubber under loading and subsequent unloading at different strain rates is shown."

...read full post

Mechanical Rubbers Hyperelastic Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


A Simplified Approach to the Simulation of Rubber-like Materials under Dynamic Loading

"The simulation of rubber materials is becoming increasingly important in automotive crashworthiness simulations. Although highly sophisticated material laws are available in LS-DYNA to model rubber parts, the determination of material properties can be non-trivial and time consuming. In many applications, the rubber component is mainly loaded uniaxially at rather high strain rates. In this paper a simplified material model for rubber is presented allowing for a fast generation of input data based on uniaxial static and dynamic test data."

...read full post

Mechanical Rubbers Hyperelastic Rate Dependency Automotive High Speed Testing LS-DYNA Research Papers


Datapoint Newsletter: Spring '09, Volume 15.1

DatapointLabs Featured in Technical Conferences.

...read full post

Plastics Rubbers Foams Hyperelastic High Speed Testing Nonlinear Material Models LS-DYNA Abaqus Newsletters