strengthening the materials core of manufacturing enterprises

Posts in Category: 'Extrusion'


Accuracy Issues in the Simulation of Quasi-Static Experiments for the Purpose of Mesh Regularization

Generating a LS-DYNA material model from cupon-level quasi-static experimental data, developing appropriate failure characteristics, and scaling these characteristics to mesh sizes appropriate for a variety of simulation models requires a regularization procedure. During an Investigation of an anisotropic material model for extruded aluminum, numerical accuracy issues led to unrealistic mesh regularization curves and non-physical simulation behavior. Sensitivity problems due to constitutive material behavior, small mesh sizes, single precision simulations, and simulated test velocity all contributed to these accuracy issues. Detailed analysis into the sources of innaccuracy led to the conclusion that in certain cases, double precision simulations are necesscary for accurate material characterization and mesh regularization.

...read full post

Mechanical Metals Yielding/Failure analysis Aerospace and Defense Automotive Extrusion Nonlinear Material Models LS-DYNA Research Papers


Effect of Polymer Viscosity on Post-Die Extrudate Shape Change in Coextruded Profiles

Bi-layer flow in a profile coextrusion die was simulated. Prediction of post-die changes in extrudate profile was included in the simulation. Mesh partitioning technique was used to allow the coextrusion simulation without modifying the finite element mesh in the profile die. Effect of polymer viscosities on the change in profile shape after the polymers leave the die is analyzed. It is found that a difference in the viscosities of the coextruded polymers can lead to a highly non-uniform velocity distribution at die exit. Accordingly, post-die changes in extrudate shape were found to be widely different when the polymers in the two coextruded layers were changed.

...read full post

Rheology Plastics Extrusion PolyXtrue Research Papers


Effect of Wall Slip on the Flow in a Flat Die for Sheet Extrusion

Flow in a flat die with coat hanger type of manifold is simulated allowing slip on die walls. Flow in the same die was also simulated by enforcing the no-slip condition on the walls. With slip on the die walls, the pressure drop, shear rate, stress, as well as temperature increase in the die, all were smaller than the corresponding values with no-slip condition on the walls. For the case with slip on die walls, since the shear rate is smaller, the elongation rate in the die is found to be the dominant fraction of the total strain rate. Due to its high computational efficiency, the software employed in this work can be effectively used to design extrusion dies for fluids exhibiting slip on die walls.

...read full post

Rheology Plastics Extrusion PolyXtrue Research Papers


Numerical and Experimental Investigation of Elongational Viscosity effects in a Coat-Hanger Die

The flow in a coat-hanger die is simulated using the axisymmetric and planar elongational viscosities of a low-density polyethylene (LDPE) resin. Elongational viscosity is found to affect the velocity distribution at the die exit. Also, the predicted pressure drop in the die changed significantly when the effect of elongational viscosity was included in the simulation. However, elongational viscosity had only a minor effect on the temperature distribution in the die. Predicted pressure drop is compared with the corresponding experimental data.

...read full post

Rheology Plastics Extrusion PolyXtrue Research Papers


Elongational Viscosity of LDPEs and Polystyrenes using Entrance Loss Data

For two low-density polyethylenes and two polystyrenes, axisymmetric and planar elongational viscosities are estimated using entrance loss data from capillary and slit rheometers, respectively. The elongational viscosity is estimated by optimizing the values of various parameters in the Sarkar–Gupta elongational viscosity model such that the entrance loss predicted by a finite element simulation agrees with the corresponding experimental data. The predicted entrance loss is in good agreement with the experimental data at high flow rates. The difference in the experimental and predicted entrance loss at lower flow rates might have been caused by large error in the experimental data in this range.

...read full post

Rheology Plastics Extrusion PolyXtrue Research Papers


Estimation of Elongational Viscosity of Polymers From Entrance Loss data Using Individual parameter Optimization

The elongational viscosity model proposed by Sarkar and Gupta (Journal of Reinforced Plastics and Composites 2001, 20, 1473), along with the Carreau model for shear viscosity is used for a finite element simulation of the flow in a capillary rheometer. The entrance pressure loss predicted by the finite element flow simulation is matched with the corresponding experimental data to predict the parameters in the elongational viscosity model. To improve the computational efficiency, various elongational viscosity parameters are optimized individually. Estimated elongational viscosity for a Low Density Polyethylene (DOW 132i) is reported for two different temperatures.

...read full post

Rheology Plastics Extrusion PolyXtrue Research Papers


Estimation of Elongational Viscosity of Polymers for Accurate Prediction of Juncture Losses in Injection Molding

A new elongational viscosity model along with the Carreau-Yasuda model for shear viscosity is used for a finite element simulation of the flow in a capillary rheometer. The entrance pressure loss predicted by the finite element flow simulation is matched with the corresponding experimental data to predict the parameters in the new elongational viscosity model.

...read full post

Rheology Plastics Extrusion Injection Molding PolyXtrue Research Papers


Estimation of Elongational Viscosity Using Entrance Flow Simulation

A new elongational viscosity model along with the Carreau-Yasuda model for shear viscosity is used for a finite element simulation of the flow in a capillary rheometer die. The entrance pressure loss predicted by the finite element flow simulation is matched with the corresponding experimental data to predict the parameters in the new elongational viscosity model. For two different polymers, the predicted elongational viscosity is compared with the corresponding predictions from Cogswell’s analysis and K-BKZ model.

...read full post

Rheology Plastics Extrusion PolyXtrue Research Papers


Challenges in the Modeling of Plastics in Computer Simulation

Finite-element analysis and injection-molding simulation are two technologies that are seeing widespread use today in the design of plastic components. Limitations exist in our ability to mathematically describe the complexity of polymer behavior to these software packages. Material models commonly used in finite-element analysis were not designed for plastics, making it difficult to correctly describe non-linear behavior and plasticity of these complex materials. Time-based viscoelastic phenomena further complicate analysis. Dealing with fiber fillers brings yet another layer of complexity. It is vital to the plastics engineer to comprehend these gaps in order to make good design decisions. Approaches to understanding and dealing with these challenges, including practical strategies for everyday use, will be discussed.

...read full post

Mechanical Plastics Blow Molding Extrusion Injection Molding Nonlinear Material Models Structural Analysis Thermoforming LS-DYNA Abaqus DIGIMAT Presentations


A Standardized Methodology for the DigimatMX Reverse Engineering Process 

We present a methodology for DIGIMAT users to perform the DIGIMAT MX reverse engineering process to obtain material parameter inputs for crash, elasto-plastic, creep and visco-elasticity. The injection-molding process used involves a standardized plaque geometry with fully developed flow, with test specimens taken from a specific plaque location. A standardized testing procedure is applied and the resulting DIGIMAT MX inputs are handled in a streamlined data stream, which saves time and improves the reliability of the reverse engineering process. The DIGIMAT MX reverse engineering itself can be performed as a service in collaboration with e-Xstream. This gives the user a speedy and tightly controlled process for performing complex finite element analysis with filled plastics

...read full post

Blow Molding Extrusion High Speed Testing Injection Molding Nonlinear Material Models Structural Analysis DIGIMAT Presentations


Mechanical and Visco-Elastic Properties of UHMWPE for In-Vivo Applications 

Ultra-high molecular weight polyethylene (UHMWPE) is used extensively in orthopedic applications within the human body. Components made from these materials are subject to complex loading over extended periods of time. Modeling of components used in such applications depends heavily on having material data under in-vivo conditions. We present mechanical and visco-elastic properties measured in saline at 37C. Comparisons to conventionally measured properties at room temperature are made.

...read full post

Plastics Biomedical Blow Molding Extrusion Injection Molding Nonlinear Material Models Structural Analysis Moldflow Abaqus ANSYS SIGMASOFT Papers POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming


Material Modeling and Mold Analysis 

We present a perspective on material modeling as applied to mold analysis requirements. Melt-solid transitions and the case for a unified material model are discussed, along with prediction of post-filling material behavior and shrinkage, and the impact of viscous heating on flow behavior and material degradation.

...read full post

Plastics Rubbers Foams Metals Aerospace and Defense Automotive Biomedical Consumer Products Energy and Petroleum Electonics/Electrical Industrial Goods CAE Vendor/Supplier Packaging Home Appliances Blow Molding Extrusion Injection Molding Nonlinear Material Models Moldflow Composites Presentations Gels Oils/Lubricants Waxes