strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Materials in Simulation know your materials

Sort by: Date | Views

Knowmats is an informal repository of information related to materials and simulation. The information helps simulation professionals perform best-in-class simulation with a better understanding of how materials are represented in FEA and simulation. read more...

Datapoint Newsletter: Winter '15, Volume 21.1

DatapointLabs Celebrates 20 Years of Putting Materials into Product Design, Very High Strain-Rate Tensile Testing Up to 1000 /s, New Long Term Stress Relaxation Capability, Expanded Creep Testing Capacity full post


Validation of Simulation Results Through Use of DIC Techniques 

It has long been desired to quantify the accuracy of simulation results. Through developments in digital image correlation (DIC) techniques, it is now possible to quantify the deviation between simulation and real life experimentation. In this paper, three-dimension DIC measurements of deformed parts are compared to deformed surfaces predicted in simulation. Using DIC, it is possible to import deformed surface elements from simulation and map the magnitude of deviation from the measurements of the actual deformed shape. full post

High Speed Testing Nonlinear Material Models Structural Analysis ANSYS Presentations Validation

Datapoint Newsletter: Winter '19, Vol. 25.1

High Humidity Testing, TestCart Online Order System, Matereality Version 12, Upcoming Events full post

Mechanical Plastics Newsletters Matereality Materials Information Management

Simulation Verification and Validation for Managers: Book Review

This booklet is intended to be a guide to the V&V process. full post

Book Review Validation

Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA, there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have been focused on creating the plasticity portion of the model. The Tsai-Wu development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites. full post

Mechanical Plasticity Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Composites Research Papers Validation

The Role of Materials in Simulation-Driven Product Development

DatapointLabs Technical Center for Materials has a mission to strengthen the materials core of manufacturing enterprises by facilitating the use of new materials, novel manufacturing processes, and simulation-based product development. A whole-process approach is needed to address the role of materials in this context. full post

Mechanical Plastics Rubbers Metals Hyperelastic Nonlinear Material Models Structural Analysis ANSYS Validation 3D Printing Matereality Materials Information Management

Datapoint Newsletter: Fall '12, Volume 18.4

Inc. Magazine Features DatapointLabs. Book Release. Catalog Updates. full post


Datapoint Newsletter: Spring '15, Volume 21.2

Validation is Focus of DatapointLabs Technical Presentations, New Combined Loading Compression Test for Composite Materials, Matereality Software for Your Product Development Team full post

Plastics Newsletters

Development, implementation and Validation of 3-D Failure Model for Aluminium 2024 for High Speed Impact Applications

FAA William J Huges Technical Center (NJ) conducts a research project to simulate failure in aeroengines and fuselages, main purpose is blade-out containment studies. This involved the implementation in LS-DYNA of a tabulated generalisation of the Johnson-Cook material law with regularisation to accommodate simulation of ductile materials. full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Presentations Validation

Material Modeling Strategies for Crash and Drop Test Simulation

Many LS-DYNA models are used for plastics crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data. full post

Metals Aerospace and Defense Automotive Consumer Products Material Supplier Industrial Goods Packaging High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH Presentations