September 15, 2015 | by Altair Engineering | views 4834
With the growing interest in additive manufacturing in the aerospace industry, there is a desire to accurately simulate the behavior of components made by this process. The layer by layer print process appears to create a morphology that is different from that from conventional manufacturing processes. This can have dramatic impact on the material properties, which in turn, can affect how the material is modeled in simulation. We tested an additively manufactured metal part for mechanical properties and validated the material model used in a linear static simulation.
...read full post
Mechanical
Aerospace and Defense
CAE Vendor/Supplier
Structural Analysis
Altair RADIOSS
Presentations
Validation
3D Printing
September 10, 2015 | by DatapointLabs | views 4351
Molding Views, brought to you by the Injection Molding Division of the Society of Plastics Engineers
...read full post
Rheology
Mechanical
Injection Molding
Moldflow
Moldex3D
SIGMASOFT
Universal Molding
Simpoe-Mold
Newsletters
August 26, 2015 | by Massimo Nutini | views 4255
The airbag door system is one of the most delicate aspects in the design phase of a car instrument panel: seamless systems are increasingly used, which combine styling criteria with good functional performances. These systems typically include a tear seam, which may be obtained through laser scoring, to pre-determine the location of the opening during airbag deployment. The design of the scoring line is currently validated through experimental tests on real life exemplars, submitted to airbag deployment, resulting in high development times and relevant costs. This is the main reason which suggests proposing numerical simulation in the design phase, not to substitute actual part homologation by testing but in order to limit the scope and complexity of the experimental campaign, thus reducing the development costs and the time to market. So far, modeling the scoring line has been difficult due to limitations in the testing methods and simulation codes available to the industry. The methodology proposed in this paper takes advantage from the availability of a material law as LS-Dyna SAMP-1, with polymer-dedicated plasticity, damage model and strain-rate dependent failure criteria, which is supported by local strain measurement used for material characterization. The method, here described in detail, is validated on a benchmark test, consisting in the real and virtual testing on a variety of scoring profiles obtained on a polypropylene box submitted to high speed impact test.
...read full post
Plasticity
Yielding/Failure Analysis
Automotive
High Speed Testing
LS-DYNA
Research Papers
Validation
August 24, 2015 | by Massimo Nutini | views 4363
Optical strain measurement for the mechanical characterization of polymers, and in particular of polyolefins, is becoming a common practice to determine the parameters to be used in a finite element analysis of crash problems. This experimental technique allows measuring the strain locally on the specimen, so that it is particularly suitable when the deformation is localized, as in the case of polymers: therefore a more accurate description of the behaviour of the material is obtained. By so doing, it is possible to describe the material constitutive law in terms of the true, local strain and of the true stress. As these data are those needed by the most complete material models developed for impact calculation, it is clear that this technique is particularly suitable for coupling with the most advanced material models currently available in the F.E. codes, as for instance with Mat 187 (SAMP-1) of LS-Dyna. The local measurement of the strain can also be used for evaluating the volume strain, whose evolution with the increasing strain shows that for PP-based material the deformation is not isochoric in most the cases. The observed increase in the material volume reflects the fact that voids generate and coalesce within the material, possibly resulting in fracture. The measure of the volume strain, computed as the trace of the strain tensor, is here used for determining the damage function utilized by the damage model implemented in SAMP-1. The effective stress is here estimated as the stress which would be measured if the deformation was isochoric, and it can be assessed on the basis of the measurement of the longitudinal local strain only. Corresponding to each value of longitudinal strain, the volume strain is then used to calculate the ratio between the effective and the true stress. Adopting this procedure, the damage function is thus determined without the needs of repeated loading-unloading tests used to derive the damage parameter from the unloading slope, which is furthermore difficult to be measured. As an application, the results of the numerical reproduction of a benchmark test, consisting in a drop test on a polypropylene box, are presented and discussed
...read full post
Mechanical
Plastics
Rate Dependency
Yielding/Failure Analysis
Automotive
High Speed Testing
LS-DYNA
Research Papers
August 24, 2015 | by Massimo Nutini | views 4198
Glass-fiber-reinforced polypropylene (GF PP) materials are increasingly being used by customers to replace metal and engineering polymers in structural automotive applications. Like all glass-fiber reinforced thermoplastics, GF PP products can show anisotropy caused by fiber orientation that is induced by the injection process. Taking into account fiber orientation in the simulations enables designers to improve the accuracy of the analyses. This can help prevent arbitrary choices and assumptions when setting material parameters, which become mandatory when an isotropic material law is used. The method proposed in this paper takes advantage of the availability within Ls-dyna of an anisotropic material law (MAT_103), which allows simplified modeling to address critical issues. This law was not developed to address the problem discussed here.
Therefore, this paper illustrates a simplified approach. The presence of glass reinforced fibers is taken into account by running a mold-filling analysis, and then transferring the material flow orientation in to the structural simulation as a material angle. The dependence of the material failure strain on the material orientation can be also easily modeled through a user subroutine. Finally, the approach only requires simple material data based on basic tensile tests; the material law parameters are then identified through optimization techniques. Although this approach is based on some simplifying assumptions, its application is quick and can help the designer obtain more accurate results with respect to the traditional isotropic approach. A selection of validation tests is then proposed that show reliable predictions using limited additional computational effort.
...read full post
Mechanical
Plastics
Rate Dependency
Automotive
High Speed Testing
LS-DYNA
Research Papers
August 24, 2015 | by Sigmasoft | views 4135
The tempering layout for injection molds is often designed departing from previous experiences. The manufacturing feasibility is the main driver when deciding where to place cooling lines. However, often the relevance of the tempering in the process profitability or in the part quality is underestimated, and due to the lack of better information sometimes the resulting tempering performs far from the optimum. As a consequence, the molding efficiency is reduced, the part quality is compromised and, once the mold is already built, sometimes expensive trial-and-error is required to bring the mold to an optimum configuration.
...read full post
Rheology
Thermal
Plastics
Automotive
Biomedical
Injection Molding
SIGMASOFT
Newsletters
August 24, 2015 | by Sigmasoft | views 4401
As the demand for functional integration and the need of design differentiation in manufactured products increase, the complexity of plastic parts increases as well; thus some previous knowledge on effective ejection systems becomes insufficient and the challenges in the design of ejection systems grow consistently.
...read full post
Rheology
Plastics
Rubbers
Viscoelastic
Automotive
Biomedical
Injection Molding
SIGMASOFT
Newsletters
August 24, 2015 | by Sigmasoft | views 4485
The profitability of a molded rubber product depends to a large extent on the mold efficiency. To achieve the maximum productivity, besides the larges possible number of cavities it is desirable to minimize the rubber consumption and to produce parts without defects.
...read full post
Rheology
Rubbers
Automotive
Biomedical
Injection Molding
SIGMASOFT
Newsletters
August 24, 2015 | by Altair Engineering | views 3710
Import your Matereality CAE Material cards directly into HyperWorks.
...read full post
Presentations
August 10, 2015 | by Tony Abbey | views 3745
Even with powerful modern computers, there is often a motivation to use simplifying techniques in structural finite element analysis (FEA).
...read full post
Structural Analysis