strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Materials in Simulation know your materials

Sort by: Date | Views

Knowmats is an informal repository of information related to materials and simulation. The information helps simulation professionals perform best-in-class simulation with a better understanding of how materials are represented in FEA and simulation. read more...


Advanced Plasticity & Fracture for Structural Car Body Metals in Crashworthiness CAE analysis: SAMP-1 plus GISSMO

This paper describes an engineering process to generate material cards for forefront crashworthiness CAE analysis that properly capture both plastic and fracture behaviour of car body structural metals. The main objective of the paper is to show that advanced plasticity approaches can be used without significantly increasing the complexity of the overall material characterization process. The paper is mainly centred in metals plastic characterization for shell elements although some important relationships with the fracture characterization will be also discussed.

...read full post

Metals Automotive Structural Analysis LS-DYNA


Datapoint Newsletter: Spring 2023, Vol. 29.1

DatapointLabs Founders Retire; Company Continues Focus on Materials in Simulation

...read full post

Thermal Mechanical Foams Newsletters Validation


Beyond Standards: Material Testing and Processing for Successful Simulations of Foam Materials (LAW90)

Simulations play a crucial role in engineering and material science, and their success heavily relies on the accuracy of input data. Material testing, data conversion, fitting, and formatting are essential steps in the simulation process. This conference will highlight the importance of material testing requirements that extend beyond ISO and ASTM standards to obtain reliable data for input into various common material models, such as Elastic-Plastic, Hyperelastic, and Rate Dependent models. The complexity of foam materials is shown through a case study of successful validation of polyurethane (PU) foam ball drop impact test using LAW 90. PU foams exhibit high deformation with rate dependency in compressive loading, as well as viscoelastic unloading behavior. Proper handling of input test data and critical settings in simulation setup are crucial for accurate results. The case study will showcase our streamlined approach to successful simulation of foam materials, including challenges and limitations of current material models.

...read full post

Mechanical Foams Hyperelastic Rate Dependency RADIOSS Validation


Datapoint Newsletter: Fall 2022, Vol. 28.2

DatapointLabs Invests in New Testing Capabilities, Expands Market Reach

...read full post

Thermal Mechanical Aerospace and Defense Biomedical Electonics/Electrical Composites Newsletters


Material Testing for SIGMASOFT

Material characterization considerations for SIGMASOFT simulations using thermoplastic and thermoset materials.

...read full post

Rheology Thermal Mechanical Plastics Rubbers Injection Molding SIGMASOFT


Datapoint Newsletter: Winter '22, Vol. 28.1

DatapointLabs Achieves Nadcap® Accreditation

...read full post

Thermal Mechanical Plastics Composites Quality


Non-Isochoric Plasticity Assessment for Accurate Crashworthiness CAE Analysis. Application to SAMP-1 and SAMP-Light.

A deep understanding of advanced material plasticity and fracture is one of the cornerstones of mechanical engineering to overcome present and future challenges in the automotive industry with respect to lightweight multi-material body solutions. The correct material law selection may imply a design lightweight efficiency improvement of between 10% and 20% depending on the material, component geometry, manufacturing technology and performance requirements. The accurate implementation of the plastic behaviour becomes mandatory when material fracture is a central design parameter. In this paper, the authors propose a clear process to experimentally measure and assess how far uniaxially tested materials are from pure isochoric plastic behaviour. This process will be named Non-isochoric Plasticity Assessment (NPA). In order to illustrate the process, NPA will be applied to actual experimental results of representative automotive metals and thermoplastics. Material plastic dilation behaviour is studied. A general description is provided regarding plasticity theory concepts required for the usage of non-isochoric plasticity material laws. An approach for the validation of the experimental input data consistency for both SAMP-1 and SAMP-Light material laws is also proposed. The overall approach is finally applied and validated on an extruded aluminium and a thermoplastic showing a proper level of correlation between CAE and experimental results for shell-based FE-models.

...read full post

Plastics Metals Automotive Structural Analysis LS-DYNA


Datapoint Newsletter: Fall 2021, Vol. 27.3

Improving Crash Simulations; Growth in Testing Services after Move

...read full post

Mechanical Plastics Metals Automotive LS-DYNA Newsletters


Datapoint Newsletter: Summer 2021, Vol. 27.2

DatapointLabs Poised for Growth after Move

...read full post

Density Rheology Thermal Mechanical Newsletters


Datapoint Newsletter: Spring 2021, Vol. 27.1

DatapointLabs Will Move, Summer '21; Get Your Testing in Now. Partner Showcase: Altair

...read full post

High Speed Testing Structural Analysis Composites RADIOSS Newsletters