strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Posts in Category: 'Packaging'


A Standardized Mechanism to Validate Crash Models for Ductile Plastics

Quantifying simulation accuracy before running crash simulations could be a helpful confidence building measure. This study continues our development of a mechanism to validate material models for plastics used in modeling high-speed impact. Focusing on models for isotropic materials that include options for rate dependency and failure, we explore other models commonly used for ductile plastics including MAT089 and MAT187.

...read full post

Mechanical Plastics Rate Dependency Yielding/Failure analysis Automotive Toys/Sporting Goods Packaging High Speed Testing LS-DYNA Research Papers Validation


Determination and Use of Material Properties for Finite Element Analysis: Book Review

This book is intended to be a companion to the NAFEMS book, "An Introduction to the Use of Material Models in FE". It informs Finite Element Analysis users of the manner and methodologies by which materials are tested in order to calibrate material models currently implemented in various FEA programs. While the authors seek first to satisfy the basic material models outlined in the companion book, they make important extensions to FEA used in currently active areas including explicit simulation.

...read full post

Mechanical Plastics Rubbers Foams Metals Hyperelastic Visco-elastic Plasticity Rate Dependency Yielding/Failure analysis Aerospace and Defense Automotive Biomedical Building Materials Consumer Products Energy and Petroleum Material Supplier Furniture Industrial Goods CAE Vendor/Supplier Packaging Home Appliances Research Laboratory High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS DIGIMAT SOLIDWORKS MSC.DYTRAN MSC.MARC MSC.NASTRAN NX Nastran PAM-COMFORT PAM-CRASH RADIOSS SIMULIA Book Review


Using an Intermediate Validation Step to Increase CAE Confidence

Simulations contain assumptions and uncertainties that a designer must evaluate to obtain a measure of accuracy. The assumptions of the product design can be differentiated from the ones for the solver and material model through the use of a mid-stage validation. An open loop validation uses a controlled test on a standardized part to compare results from a simulation to the physical experiment. From the validation, confidence in the material model and solver is gained. In this study, the material properties of a polypropylene are tested to characterize for an *ELASTIC *PLASTIC model in ABAQUS. A validation of a quasi-static three-point bending experiment of a parallel ribbed plate is then performed and simulated. A comparison of the strain fields resulting from the complex stress state on the face of the ribs obtained by digital image correlation (DIC) vs. simulation is used to quantify the simulation's fidelity.

...read full post

Plastics Plasticity Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Furniture Packaging Home Appliances Nonlinear Material Models Structural Analysis Abaqus Research Papers Validation


Understanding and Coping with Material Modeling Limitations in FEA 

The limitations of modeling materials for simulation are discussed, including lack of clarity in material model requirements, gaps between the material data and the model to which it will be fitted, issues in obtaining pertinent properties, difficulties in parameter conversion (fitting), and preparation of input files for the software being used. Means to address these limitations are presented, including understanding the model completely, measuring the correct data with precision on the right material, selecting the best model for the data and ensuring the best fit of the model to the data, validating the model against a simple experiment, and following best practices to create an error-free input file.

...read full post

Plastics Rubbers Foams Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Electonics/Electrical Industrial Goods Packaging Home Appliances Presentations


A Robust Methodology to Calibrate Crash Material Models for Polymers

High strain rate material modelling of polymers for use in crash and drop testing has been plagued by a number of problems. These include poor quality and noisy data, material models unsuited to polymer behaviour and unclear material model calibration guidelines. The modelling of polymers is thus a risky proposition with a highly variable success rate. In previous work, we tackled each of the above problems individually. In this paper, we summarize and then proceed to present a material modelling strategy that can be applied for a wide variety of polymers.

...read full post

Mechanical Plastics Aerospace and Defense Automotive Consumer Products Material Supplier Industrial Goods Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH RADIOSS Research Papers


Selecting Material Models for the Simulation of Foams 

We seek to lay down a framework to help us understand the different behavioral classes of foams. Following a methodology that we previously applied to plastics, we will then attempt to propose the right LS-DYNA material models that best capture these behaviours. Guidelines for model selection will be presented as well as best practices for characterization. Limitations of existing material models will be discussed.

...read full post

Foams Automotive Consumer Products Material Supplier Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN Research Papers


Simulating Plastics in Drop and Crash Tests 

If you want a crash simulation involving plastics to yield useful results, it is important to model the material behavior appropriately. The high strain rates have a significant effect on the properties, and failure can be ductile or brittle in nature, depending on a number of factors.

...read full post

Plastics Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Industrial Goods Packaging High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH RADIOSS Research Papers


Material Modeling and Mold Analysis 

We present a perspective on material modeling as applied to mold analysis requirements. Melt-solid transitions and the case for a unified material model are discussed, along with prediction of post-filling material behavior and shrinkage, and the impact of viscous heating on flow behavior and material degradation.

...read full post

Plastics Rubbers Foams Metals Aerospace and Defense Automotive Biomedical Consumer Products Energy and Petroleum Electonics/Electrical Industrial Goods CAE Vendor/Supplier Packaging Home Appliances Blow Molding Extrusion Injection Molding Nonlinear Material Models Moldflow Composites Presentations Gels Oils/Lubricants Waxes


Material Modeling Strategies for Crash and Drop Test Simulation

Many LS-DYNA models are used for plastics crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data.

...read full post

Metals Aerospace and Defense Automotive Consumer Products Material Supplier Industrial Goods Packaging High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH Presentations


Characterization and Modeling of Non-linear Behavior of Plastics 

A considerable amount of CAE today is devoted to the simulation of non-metallic materials, many of which exhibit non-linear behavior. However, most material models to date are still based on metals theory. This places severe restrictions on the proper description of their behavior in CAE. In this paper, we describe non-linear elastic behavior and its interrelationship with plastic behavior in plastics. Special attention is given to the differentiation between visco-elastic (recoverable) strain and plastic (non-recoverable) strain. The goal of this work is to have a material model for plastics that can describe both loading and unloading behavior accurately and provide an accurate measure of damage accumulation during complex loading operations.

...read full post

Plastics Rubbers Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Packaging Home Appliances Nonlinear Material Models Structural Analysis Abaqus Research Papers


Methodology for Selection of Material Models for Plastics Impact Simulation 

The volume of plastics that are subjected to impact simulation has grown rapidly. In a previous paper, we discussed why different material models are needed to describe the highly varied behavior exhibited by these materials. In this paper, we cover the subject in more detail, exploring in depth, the nuances of commonly used LS-DYNA material models for plastics, covering important exceptions and criteria related to their use.

...read full post

Plastics Aerospace and Defense Automotive Consumer Products Material Supplier Industrial Goods Packaging Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS PAM-CRASH RADIOSS Research Papers


A Novel Technique to Measure Tensile Properties of Plastics at High Strain Rates

High strain-rate properties have many applications in the simulation of automotive crash and product drop testing. These properties are difficult to measure. These difficulties result from inaccuracies in extensometry at high strain rates due to extensometer slippage and background noise due to the sudden increase in stress at the start of the test. To eliminate these inaccuracies we use an inferential technique that correlates strain to extension at low strain rates and show that this can be extended to measure strain at higher strain rates

...read full post

Mechanical Plastics Rate Dependency Aerospace and Defense Automotive Consumer Products Material Supplier Toys/Sporting Goods Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH Research Papers


Understanding the Role of Material Properties in Simulations, Part 2

We discuss material properties in injection molding simulations, including the definition of property requirements, identification of evaluation parameters, and the role of material properties at each stage of the injection molding process, from mold filling through cooling, post-filling and shrinkage/warpage considerations.

...read full post

Plastics Material Supplier Mold Maker/Designer Packaging Injection Molding Moldflow Moldex3D Cadmould C-MOLD Presentations


High Speed Stress Strain Material Properties as Inputs for the Simulation of Impact Situations

With the recent changes in the crashworthiness requirements for US automobiles for improved safety, design engineers are being challenged to design interior trim systems comprised of polymeric materials to meet these new impact requirements. Impact analysis programs are being used increasingly by designers to gain an insight into the final part performance during the design stage. Material models play a crucial role in these design simulations by representing the response of the material to an applied stimulus. In this work, we seek to develop novel test methods to generate high speed stress-strain properties of plastics, which can be used as input to structural analysis programs...

...read full post

Plastics Metals Aerospace and Defense Material Supplier Toys/Sporting Goods Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis Thermoforming LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH Research Papers

Contributors