April 17, 2024 | by DatapointLabs | views 1634
Thermoplastic composites present a promising opportunity for innovation within the automotive sector, owing to their lightweight properties, durability, and recyclability. Our efforts concentrate on testing and developing models to accurately simulate the behavior of materials in automotive settings. By delivering precise simulation models, we empower manufacturers to gain deeper insights into the performance of these materials, thereby streamlining their incorporation into vehicle design and manufacturing workflows. This advancement ensures the effective utilization of thermoplastic composites, resulting in tangible advantages such as improved fuel efficiency, enhanced safety, and reduced environmental footprint across the automotive industry.
...read full post
Automotive
Nonlinear Material Models
Composites
Validation
January 31, 2022 | by Datapoint Newsletters | views 2835
DatapointLabs Achieves Nadcap® Accreditation
...read full post
Thermal
Mechanical
Plastics
Composites
Quality
March 08, 2021 | by Datapoint Newsletters | views 3427
DatapointLabs Will Move, Summer '21; Get Your Testing in Now. Partner Showcase: Altair
...read full post
High Speed Testing
Structural Analysis
Composites
Altair RADIOSS
Newsletters
March 13, 2019 | by DatapointLabs | views 4797
Multi-scale material models are being increasing applied for high level simulation of complex materials such as UD layups, fabric laminate composites, fiber-filled plastics. These models require data inputs from a variety of material tests which are then assembled into models used in the finite element solvers. We present an infrastructure for the digitalization of such information, where the required material data are collected including a process for maintaining traceability and consistency of the source data. Information about the compositional characteristics and processing history are captured. Built-in software modules or external client tools can be used for calibration of material models with the resulting material file linked to the source data. The accuracy of the reduced order model can be checked by running a validation simulation against a physical test. Models can be published and released into a master CAE materials library output where they can be used to model such materials for a variety of target solvers. This process improves the reliability and accuracy of composites simulation.
...read full post
Aerospace and Defense
Automotive
Structural Analysis
Composites
Presentations
Materials Information Management
October 01, 2018 | by DatapointLabs | views 9042
Multiscale material models are being increasingly applied for high-level simulation of complex materials, such as continuous reinforced material products (unidirectional and woven product forms). These multiscale material models require input data from a minimum of experimental tests, which are then used to characterize a multiscale material model that can be used in structural simulations within a variety of commercial finite element solvers, including OptiStruct, RADIOSS, Abaqus, and LS-Dyna. Using these models, it is possible is to predict the performance of layups from single layer properties, as well as performance of these composites under complex loadings.
We present a framework where the required experimental data are collected, including a process for maintaining traceability and consistency of the experimental data using the Matereality software. Experimental test data are transmitted to the HyperWorks Multiscale Designer software for development of an appropriate multiscale material model. The resulting multiscale material model data is stored within Matereality linked to the source experimental data. Different manufactured layups are tested and compared to simulation in a validation step which provides a measure of the solution accuracy.
...read full post
Mechanical
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
Composites
Altair RADIOSS
Validation
OptiStruct
July 27, 2015 | by Paul Du Bois | views 4828
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA, there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have been focused on creating the plasticity portion of the model. The Tsai-Wu development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
...read full post
Mechanical
Plasticity
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Composites
Research Papers
Validation
July 27, 2015 | by Paul Du Bois | views 4442
"A general purpose orthotropic elasto-plastic computational constitutive material model has been
developed to accurately predict the response of composites subjected to high velocity impact.
The three-dimensional orthotropic elasto-plastic composite material model is being implemented
initially for solid elements in LS-DYNA® as MAT213. In order to accurately represent the
response of a composite, experimental stress-strain curves are utilized as input, allowing for a
more general material model that can be used on a variety of composite applications. The
theoretical details are discussed in a companion paper. This paper documents the
implementation, verification and validation of the material model using the T800-F3900
fiber/resin composite material."
...read full post
Mechanical
Plasticity
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Composites
Research Papers
Validation
October 08, 2014 | by DatapointLabs | views 4526
LS-DYNA software contains a wealth of material models that allow for the simulation of transient phenomena. The Matereality® CAE Modeler is a generalized pre-processor software used to convert material property data into material parameters for different material models used in CAE. In a continuation of previously presented work, we discuss the extension of the CAE Modeler software to commonly used material models beyond MAT_024. Software enhancements include advanced point picking to perform extrapolations beyond the tested data, as well as the ability to fine-tune the material models while scrutinizing the trends shown in the underlying raw data. Advanced modeling features include the ability to tune the rate dependency as well as the initial response. Additional material models that are quite complex and difficult to calibrate are supported, including those for hyperelastic and viscoelastic behavior. As before, the written material cards are directly readable into the LS-DYNA software, but now they can also be stored and catalogued in a material card library for later reuse.
...read full post
Plastics
Rubbers
Foams
Metals
High Speed Testing
Injection Molding
Nonlinear Material Models
Structural Analysis
LS-DYNA
Composites
Presentations
April 30, 2014 | by DatapointLabs | views 4313
The use of CAE in design decision-making has created a need for proven simulation accuracy. The two areas where simulation touches the ground are with material data and experimental verification and validation (V&V). Precise, well designed and quantitative experiments are key to ensure that the simulation initiates with correct material behavior. Similar validation experiments are needed to verify simulation and manage the risk associated with this predictive technology.
...read full post
Plastics
Rubbers
Foams
Metals
Automotive
Biomedical
Building Materials
Consumer Products
Energy and Petroleum
Material Supplier
Toys/Sporting Goods
Electonics/Electrical
Industrial Goods
CAE Vendor/Supplier
Mold Maker/Designer
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Presentations
October 29, 2013 | by DatapointLabs | views 4478
There is interest in quantifying the differences between simulation and real life experimentation. This kind of work establishes a baseline for more complex simulations bringing a notion of traceability to the practice of CAE. We present the use of digital image correlation as a way to capture strain fields from component testing and compare these to simulation. Factors that are important in ensuring fidelity between simulation and experiment will be discussed.
...read full post
Plastics
Aerospace and Defense
Automotive
Biomedical
Material Supplier
Electonics/Electrical
CAE Vendor/Supplier
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Presentations
September 15, 2013 | by DatapointLabs | views 4329
The development of material parameters for FEA is heavily reliant on precision material data that captures the stress-strain relationship with fidelity. While conventional methods involving UTMs and extensometers are quite adequate for obtaining such data on a number of materials, there are important cases where they have been known to be inadequate. The testing of composites to obtain directional properties remains a complex task because of the difficulty related to measuring these properties in different orientations. Digital Image Correlation (DIC) methods are able to capture the stress-strain relationship all the way to failure. In this paper, we combine DIC and conventional methods to measure directional properties of composites. We exploit the unique capability of DIC to retroactively place virtual strain gauges in areas of critical interest in the test specimen. Utilising an Iosipescu fixture, we measure shear properties of structured composites in a variety of orientations to compute the parameters of an orthotropic linear elastic material model. Model consistency is checked by validation using Abaqus.
...read full post
Aerospace and Defense
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Research Papers
July 11, 2013 | by Datapoint Newsletters | views 4526
Digital Image Correlation Techniques Enhance Composite Testing Capability. Store and Manage Properties of Structured Composites with a Matereality® Database.
...read full post
Automotive
LS-DYNA
Abaqus
Composites
Newsletters
Validation
March 10, 2013 | by DatapointLabs | views 4287
SAMP-1 is a complex material model designed to capture non-Mises yield and localization behavior in plastics. To perform well, it is highly dependent on accurate post-yield material data. A number of assumptions and approximations are currently used to translate measured stress-strain data into the material parameters related to these inputs. In this paper, we look at the use of direct localized strain measurements using digital image correlation (DIC) as a way to more directly extract the required data needed for SAMP-1.
...read full post
Plastics
Nonlinear Material Models
Structural Analysis
LS-DYNA
Composites
Research Papers
May 08, 2011 | by DatapointLabs | views 4642
DatapointLabs' TestPaks (material testing + model calibration + Abaqus input decks) for rate-dependent, hyperelastic, viscoelastic, NVH, and the use of Abaqus CAE Modeler to transform raw data into material cards will be presented. A representative from Idiada will present a case study explaining the use of DatapointLabs’ material data and TestPaks for simulation.
...read full post
Plastics
Rubbers
Foams
Metals
High Speed Testing
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Presentations
November 03, 2010 | by Datapoint Newsletters | views 4365
Composite Testing on the Rise. Matereality 4.0 Release.
...read full post
Composites
Newsletters
May 16, 2008 | by DatapointLabs | views 4697
We present a perspective on material modeling as applied to mold analysis requirements. Melt-solid transitions and the case for a unified material model are discussed, along with prediction of post-filling material behavior and shrinkage, and the impact of viscous heating on flow behavior and material degradation.
...read full post
Plastics
Rubbers
Foams
Metals
Aerospace and Defense
Automotive
Biomedical
Consumer Products
Energy and Petroleum
Electonics/Electrical
Industrial Goods
CAE Vendor/Supplier
Packaging
Home Appliances
Blow Molding
Extrusion
Injection Molding
Nonlinear Material Models
Moldflow
Composites
Presentations
Gels
Oils/Lubricants
Waxes
April 23, 2003 | by DatapointLabs | views 4221
This book covers some of the most significant techniques used in modern analytical technology to characterize plastic and composite materials.
...read full post
Plastics
Rubbers
Foams
Composites
March 18, 1994 | by DatapointLabs | views 4176
This book presents a valuable resource for engineers and designers seeking to apply structural analysis and other advanced methods to the design of plastic parts. The reader learns what to expect for the mechanical properties of polymers and develops a grasp of how plastics respond to various applied stress conditions. The book introduces mechanical tests and polymer transitions, moving onward into chapters on elastic behavior, creep and stress relaxation, dynamic mechanical properties, stress- strain behavior and strength, It also covers abrasion, fatigue, friction and stress cracking. Additionally, the effects of fillers and fibers on these properties are considered.
...read full post
Mechanical
Plastics
Structural Analysis
Composites
Book Review