strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Posts in Category: 'Yielding/Failure analysis'


New Generation Modeler for LS-DYNA Material Parameter Conversion

We describe a new software component that takes into consideration the unique multi-variate nature of LS-DYNA material models. Rate-dependent models require adjustment and tuning of many material parameters to fit the rate-dependent tensile properties. Drawing upon a robust back-end data model, a graphical user interface provides drag and drop capability to allow the user to perform tasks such as model extrapolation beyond tested data, modulus change, rate dependency tuning and failure criteria adjustment while assuring self-consistency of the underlying material model. Unit system conversions are also facilitated, eliminating error and ensuring that material inputs to simulation correctly reflect the intent of the CAE analyst. The utility of the Matereality CAE modelers is illustrated with examples for LS-DYNA material models MAT_019, MAT_024 and MAT_089 LCSR.

...read full post

Mechanical Rate Dependency Yielding/Failure analysis LS-DYNA Papers Presentations Matereality


Workshop: Testing, Modeling and Validation for Plastics & Rubber Simulation in ANSYS

Plastics exhibit non-linear viscoelastic behavior followed by a combination of deviatoric and volumetric plastic deformation until failure. Capturing these phenomena correctly in simulation presents a challenge because of limitations in commonly used material models. We follow an approach where we outline the general behavioral phenomena, then prescribe material models for handling different phases of plastics deformation. Edge cases will then be covered to complete the picture. Topics to be addressed include: Using elasto-plasticity; When to use hyperelasticity; Brittle polymers – filled plastics; Failure modes to consider; Criteria for survival; Choosing materials; Spatial non-isotropy from injection molding; Importance of residual stress; Visco-elastic and creep effects; Strain-rate effects for drop test and crash simulations; Fitting material data to FEA material models; The use of mid-stage validation as a tool to confirm the quality of simulation before use in real-life applications.

...read full post

Density Rheology Thermal Mechanical Plastics Rubbers Hyperelastic Visco-elastic Plasticity Rate Dependency Yielding/Failure analysis Injection Molding Structural Analysis ANSYS Presentations Validation


Damage Modeling under Impact Loading in Talc-Filled Polypropylene Compounds

Topics covered: Damage in mineral filled polypropylene under impact conditions; damage modeling and parameter identification (prior art, LyondellBasell contributions, debate in the CAE community); experimental and numerical validation; next steps

...read full post

Mechanical Plastics Rate Dependency Yielding/Failure analysis Automotive Material Supplier High Speed Testing LS-DYNA Presentations


A Standardized Mechanism to Validate Crash Models for Ductile Plastics

Quantifying simulation accuracy before running crash simulations could be a helpful confidence building measure. This study continues our development of a mechanism to validate material models for plastics used in modeling high-speed impact. Focusing on models for isotropic materials that include options for rate dependency and failure, we explore other models commonly used for ductile plastics including MAT089 and MAT187.

...read full post

Mechanical Plastics Rate Dependency Yielding/Failure analysis Automotive Toys/Sporting Goods Packaging High Speed Testing LS-DYNA Research Papers Validation


Determination and Use of Material Properties for Finite Element Analysis: Book Review

This book is intended to be a companion to the NAFEMS book, "An Introduction to the Use of Material Models in FE". It informs Finite Element Analysis users of the manner and methodologies by which materials are tested in order to calibrate material models currently implemented in various FEA programs. While the authors seek first to satisfy the basic material models outlined in the companion book, they make important extensions to FEA used in currently active areas including explicit simulation.

...read full post

Mechanical Plastics Rubbers Foams Metals Hyperelastic Visco-elastic Plasticity Rate Dependency Yielding/Failure analysis Aerospace and Defense Automotive Biomedical Building Materials Consumer Products Energy and Petroleum Material Supplier Furniture Industrial Goods CAE Vendor/Supplier Packaging Home Appliances Research Laboratory High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS DIGIMAT SOLIDWORKS MSC.DYTRAN MSC.MARC MSC.NASTRAN NX Nastran PAM-COMFORT PAM-CRASH RADIOSS SIMULIA Book Review


Numerical simulation of the laser scoring line behavior in airbag deployment

The airbag door system is one of the most delicate aspects in the design phase of a car instrument panel: seamless systems are increasingly used, which combine styling criteria with good functional performances. These systems typically include a tear seam, which may be obtained through laser scoring, to pre-determine the location of the opening during airbag deployment. The design of the scoring line is currently validated through experimental tests on real life exemplars, submitted to airbag deployment, resulting in high development times and relevant costs. This is the main reason which suggests proposing numerical simulation in the design phase, not to substitute actual part homologation by testing but in order to limit the scope and complexity of the experimental campaign, thus reducing the development costs and the time to market. So far, modeling the scoring line has been difficult due to limitations in the testing methods and simulation codes available to the industry. The methodology proposed in this paper takes advantage from the availability of a material law as LS-Dyna SAMP-1, with polymer-dedicated plasticity, damage model and strain-rate dependent failure criteria, which is supported by local strain measurement used for material characterization. The method, here described in detail, is validated on a benchmark test, consisting in the real and virtual testing on a variety of scoring profiles obtained on a polypropylene box submitted to high speed impact test.

...read full post

Plasticity Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers Validation


Characterization of Polyolefins for Design Under Impact: from True Stress/ Local Strain Measurements to the F.E. Simulation with LS-Dyna Mat. SAMP-1

Optical strain measurement for the mechanical characterization of polymers, and in particular of polyolefins, is becoming a common practice to determine the parameters to be used in a finite element analysis of crash problems. This experimental technique allows measuring the strain locally on the specimen, so that it is particularly suitable when the deformation is localized, as in the case of polymers: therefore a more accurate description of the behaviour of the material is obtained. By so doing, it is possible to describe the material constitutive law in terms of the true, local strain and of the true stress. As these data are those needed by the most complete material models developed for impact calculation, it is clear that this technique is particularly suitable for coupling with the most advanced material models currently available in the F.E. codes, as for instance with Mat 187 (SAMP-1) of LS-Dyna. The local measurement of the strain can also be used for evaluating the volume strain, whose evolution with the increasing strain shows that for PP-based material the deformation is not isochoric in most the cases. The observed increase in the material volume reflects the fact that voids generate and coalesce within the material, possibly resulting in fracture. The measure of the volume strain, computed as the trace of the strain tensor, is here used for determining the damage function utilized by the damage model implemented in SAMP-1. The effective stress is here estimated as the stress which would be measured if the deformation was isochoric, and it can be assessed on the basis of the measurement of the longitudinal local strain only. Corresponding to each value of longitudinal strain, the volume strain is then used to calculate the ratio between the effective and the true stress. Adopting this procedure, the damage function is thus determined without the needs of repeated loading-unloading tests used to derive the damage parameter from the unloading slope, which is furthermore difficult to be measured. As an application, the results of the numerical reproduction of a benchmark test, consisting in a drop test on a polypropylene box, are presented and discussed

...read full post

Mechanical Plastics Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


Enhanced Failure Prediction in Sheet Metal Forming Simulations through Coupling of LS-DYNA and Algorithm Crach

"In sheet-metal-forming the forming limit curve (FLC) is used for ductile sheets to predict fracture in deep drawing. However the use of the FLC is limited to linear strain paths. The initial FLC cannot be used in a complex nonlinear strain history of a deep drawing process or a successive stamp and crash process including a significant change in strain rate. The CRACH software has been developed to predict the forming limit of sheets for nonlinear strain paths [1]. It has been validated to predict instability for bilinear strain paths with static loading in the first path and dynamic loading in the second path for mild steels [2]. As the postprocessing of strain paths from single finite elements in CRACH is not economic for industrial applications MATFEM initiated a project to couple CRACH directly with FEM-Code LS-DYNA using a userdefined material model. This allows a prediction of possible failure during the simulation for all elements with respect to their complete strain history. A special strategy has been developed to include CRACH without extensive increase in total CPU time. The developed interface to LS-DYNA allows also the implementation of other failure criteria demanding the history of deformation like for example a tensorial fracture criterion. In order to test the reliability of the calculated safety factor experimental tests for bilinear strain paths have been simulated [2]. In this case the experimental and numerical investigations have been made on two-stage forming processes (static in the 1st stage and both static/dynamic in the 2nd stage) . The static-static case should simulate a stamping process with bilinear strain path. The static-dynamic case should simulate a successive stamp and crash process. The simulation of a complex deep drawing problem including areas with significantly nonlinear strain paths has been simulated with LS-DYNA/CRACH-coupling. It can be shown that the prediction of CRACH can differ significantely from a “standard” prediction based on the initial FLC. The coupling of LS-DYNA and CRACH showed the potential to predict possible fracture in deep drawing and crash loading at an early design stage and allowed to optimise geometry and material quality to significantly reduce later problems in real components."

...read full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


A Systematic Approach to Model Metals, Compact Polymers and Structural Foams in Crash Simulations with a Modular User Material

"Today the automotive industry is faced with the demand to build light fuel-efficient vehicles while optimizing its crashworthiness and stiffness. A wide variety of new metallic and polymeric materials have been introduced to account for these increased requirements. Numerical analysis can significantly support this process if the analysis is really predictive. Within the numerical model a correct characterization of the material behaviour – including elasto-viscoplastic behaviour and failure - is substantial. The particular behaviour of each material group must be covered by the material model. The user material model MF GenYld+CrachFEM allows for a modular combination of phenomenological models (yield locus, strain hardening, damage evolution, criteria for fracture initiation) to give an adequate representation of technical materials. This material model can be linked to LS-DYNA when using the explicit-dynamic time integration scheme. This paper gives an overview on the material characterization of ultra high strength steels (with focus on failure prediction), non-reinforced polymers (with focus on anisotropic hardening of polymers), and structural foams (with focus on compressibility and stress dependent damage evolution) with respect to crash simulation. It will be shown that a comprehensive material model - including damage and failure behaviour - enables a predictive simulation without iterative calibration of material parameters. A testing programme has been done for each material group in order to allow a fitting of the parameters of the material model first. In a second step different component tests have been carried out, which were part of a systematic procedure to validate the appropriate predictions of the crash behaviour with LS-Dyna and user material MF_GenYld+CrachFEM for each material group."

...read full post

Mechanical Plastics Foams Metals Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


Improved Plasticity and Failure models for Extruded MgProfiles in Crash Simulations

"The Crash Simulation of Magnesium Structures with Finite Element Methods demands the use of suitable material and failure models. An associated plasticity model describing the complex asymmetric yield behaviour in tension and compression of Mg extrusions has been developed during the InMaK-project (Innovative Magnesium Compound Structures for Automobile Frames) supported by the German Federal Ministry for Education and Research (BMBF). Differences to the material model 124 in LS-DYNA are exposed. In order to describe the failure behaviour of Mg extrusions under multiaxial loading in FEM crash simulation this constitutive model has been combined with a fracture model for ductile and shear fracture. The fracture model has been added to the user defined constitutive magnesium model in LS-DYNA. The experimental investigations carried out on model components are compared with numerical derived results. Experimental methods for fracture parameter evaluation are shown and general aspects of metal failure due to fracture as well as different modelling techniques are discussed."

...read full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


Development, implementation and Validation of 3-D Failure Model for Aluminium 2024 for High Speed Impact Applications

FAA William J Huges Technical Center (NJ) conducts a research project to simulate failure in aeroengines and fuselages, main purpose is blade-out containment studies. This involved the implementation in LS-DYNA of a tabulated generalisation of the Johnson-Cook material law with regularisation to accommodate simulation of ductile materials.

...read full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Presentations Validation


Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA, there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have been focused on creating the plasticity portion of the model. The Tsai-Wu development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

...read full post

Mechanical Plasticity Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Composites Research Papers Validation


Verification and Validation of a Three-Dimensional Generalized Composite Material Model

"A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to accurately predict the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA® as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and validation of the material model using the T800-F3900 fiber/resin composite material."

...read full post

Mechanical Plasticity Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Composites Research Papers Validation


Development of Material Input Data for Solid Elements under Crash Loads

"Heavy trucks have large masses and only small deformation zones. Because of this, they are loaded relatively severe in case of a crash. Under those conditions structural response is characterised not only by plastic deformation but also by failure in terms of cracks or fracture. Hence, failure prediction is essential for designing such parts. The following article describes the procedure of generating material models for failure prognosis of solid parts in the Commercial Vehicles Division at Daimler. Sheet metal parts are mostly discretised by shell elements. In this case the state of stress is characterized by hydrostatic pressure over von-Mises effective stress, the so-called triaxiality. For many real-life load cases which can be modeled by thin shells this ratio is between –2/3 and –2/3. Within this range the Gurson material model with the Tvergaard Needlemann addition leads to sufficiently accurate results. Furthermore, the Gurson material model allows considering the effect of element size, which amongst others is important for ductile materials. Most often however, in the case of solid parts the state of stress is more complex, which results in a triaxiality smaller than –1 or larger than 2/3. Gurson material models are usually validated based on shell meshes and tensile tests with flat bar specimen. If applied to solid parts, these models tend to underpredict failure . Thus, for solid parts the GURSON_JC material model is used. The Johnson Cook parameters are derived from an existing Gurson material model. Afterwards the material model is adapted to test results by modifying the load curve giving failure strain against triaxiality. This requires tensile tests"

...read full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers Validation


Experimental and Numerical Investigation of Fracture in Aluminium

"To assess the problem of containment after a blade-off accident in an aero-engine by numerical simulation the FAA has instigated a research effort concerning failure prediction in a number of relevant materials. Aluminium kicked off the program which involved an intensive testing program providing failure data under different states of stress, different strain rates and different temperatures. In particular split Hopkinson bars were used to perform dynamic punch tests on plates of different thicknesses allowing to investigate the transition between different failure modes such as petaling and plugging. Ballistic impact tests were performed at NASA GRC for the purpose of validation. This paper focuses on the numerical simulation effort and a comparison with experimental data is done. The simulations were performed with LS-DYNA and a tabulated version of the Johnson-Cook material law was developed in order to increase the generality, flexibility and user-friendliness of the material model."

...read full post

Mechanical Metals Yielding/Failure analysis Aerospace and Defense High Speed Testing LS-DYNA Research Papers Validation


A Constitutive Formulation for Polymers Subjected to High Strain Rates

"Reliable prediction of the behavior of structures made from polymers is a topic under considerable investigation in engineering practice. Especially, if the structure is subjected to dynamic loading, constitutive models considering the mechanical behavior properly are still not available in commercial finite element codes yet. In our paper, we present a new constitutive law for polymers which recovers important phenomena like necking, crazing, strain rate dependency, unloading behavior and damage. In particular, different yield surfaces in compression and tension and strain rate dependent failure, the latter with damage induced erosion, is taken into account. All relevant parameters are given directly in the input as load curves, i.e. time consuming parameter identification is not necessary. Moreover, the models by von Mises and Drucker-Prager are included in the description as special cases. With the present formulation, standard verification test can be simulated successfully: tensile and compression test, shear test and three point bending tests."

...read full post

Mechanical Plastics Plasticity Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


A Comparative Review of Damage and Failure Models and a Tabulated Generalization

"Reliable prediction of damage and failure in structural parts is a major challenge posed in engineering mechanics. Although solid material models predicting the deformation behaviour of a structure are increasingly available, reliable prediction of failure remains still open. With SAMP (a Semi-Analytical Model for Polymers), a general and flexible plasticity model is available in LS-DYNA since version 971. Although originally developed for plastics, the plasticity formulation in SAMP is generally applicable to materials that exhibit permanent deformation, such as thermoplastics, crushable foam, soil and metals. In this paper, we present a generalized damage and failure procedure that has been implemented in SAMP and will be available in LS-DYNA soon. In particular, important effects such as triaxiality, strain rate dependency, regularization and non-proportional loading are considered in SAMP. All required physical material parameters are provided in a user-friendly tabulated way. It is shown that our formalism includes many different damage and failure models as special cases, such as the well-known formulations by Johnson-Cook, Chaboche, Lemaitre and Gurson among others. "

...read full post

Mechanical Plastics Plasticity Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


Accuracy Issues in the Simulation of Quasi-Static Experiments for the Purpose of Mesh Regularization

Generating a LS-DYNA material model from cupon-level quasi-static experimental data, developing appropriate failure characteristics, and scaling these characteristics to mesh sizes appropriate for a variety of simulation models requires a regularization procedure. During an Investigation of an anisotropic material model for extruded aluminum, numerical accuracy issues led to unrealistic mesh regularization curves and non-physical simulation behavior. Sensitivity problems due to constitutive material behavior, small mesh sizes, single precision simulations, and simulated test velocity all contributed to these accuracy issues. Detailed analysis into the sources of innaccuracy led to the conclusion that in certain cases, double precision simulations are necesscary for accurate material characterization and mesh regularization.

...read full post

Mechanical Metals Yielding/Failure analysis Aerospace and Defense Automotive Extrusion Nonlinear Material Models LS-DYNA Research Papers


A Simplified Approach for Strain-Rate Dependent Hyperelastic Materials with Damage

"Simulation of rubber-like materials is usually based on hyperelasticity. If strain-rate dependency has to be considered viscous dampers are added to the rheological model. A disadvantage of such a description is timeconsuming parameter identification associated with the damping constants. In this paper, a tabulated formulation is presented which allows fast generation of input data based on uniaxial static and dynamic tensile tests at different strain rates. Unloading, i.e. forming of a hysteresis, can also be modeled easily based on a damage formulation. We show the theoretical background and algorithmic setup of our model which has been implemented in the explicit solver LS-DYNA [1]-[3]. Apart from purely numerical examples, the validation of a soft and a hard rubber under loading and subsequent unloading at different strain rates is shown."

...read full post

Mechanical Rubbers Hyperelastic Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


A semi-analytical model for polymers subjected to high strain rates

"Reliable prediction of the behaviour of structures made from polymers is a topic under considerable investigation in engineering practice. Especially, if the structure is subjected to dynamic loading, constitutive models considering the mechanical behaviour properly are still not available in commercial finite element codes. First, we give an overview of material laws for thermoplastics and show how the behaviour can be characterized and approximated by using visco-elasticity and metal plasticity, respectively. Experimental work is presented to point out important phenomena like necking, strain rate dependency, unloading behaviour and damage. A constitutive model including the experimental findings is derived. In particular, different yield surfaces in compression and tension and strain rate dependent failure, the latter with damage induced erosion, need to be taken into account. With the present formulation, standard verification tests can be simulated successfully. Also, an elastic damage model is used to approximate the unloading behaviour of thermoplastics adequately."

...read full post

Mechanical Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


SAMP-1: A Semi-Analytical Model for the Simulation of Polymers

The numerical simulation of structural parts made from plastics is becoming increasingly important nowadays. The fact that almost any structural requirement can be combined in a lightweight, durable and cost effective structure is the driving force behind its widespread application. More and more structural relevant parts are being constructed and manufactured from plastics. This on the other hand drives the demand for reliable and robust methods to design these parts and to predict their structural behaviour. the key ingredients that need to be available are verified, calibrated and validated constitutive models for any family of plastic material. This holds not only true for crashworthiness applications but for any other application field.

...read full post

Plastics Plasticity Rate Dependency Yielding/Failure analysis Automotive Nonlinear Material Models LS-DYNA