March 13, 2019 | by DatapointLabs | views 4599
Multi-scale material models are being increasing applied for high level simulation of complex materials such as UD layups, fabric laminate composites, fiber-filled plastics. These models require data inputs from a variety of material tests which are then assembled into models used in the finite element solvers. We present an infrastructure for the digitalization of such information, where the required material data are collected including a process for maintaining traceability and consistency of the source data. Information about the compositional characteristics and processing history are captured. Built-in software modules or external client tools can be used for calibration of material models with the resulting material file linked to the source data. The accuracy of the reduced order model can be checked by running a validation simulation against a physical test. Models can be published and released into a master CAE materials library output where they can be used to model such materials for a variety of target solvers. This process improves the reliability and accuracy of composites simulation.
...read full post
Aerospace and Defense
Automotive
Structural Analysis
Composites
Presentations
Materials Information Management
November 15, 2017 | by Altair Engineering | views 4050
Simulation uncertainties arise from different assumptions made in model creation. Mid-stage software validations improve confidence and optimize the design of additively manufactured aerospace components.
...read full post
Mechanical
Aerospace and Defense
Structural Analysis
Papers
Validation
3D Printing
June 07, 2016 | by DatapointLabs | views 5590
With the advent of 3D printing and additive manufacturing, manufacturing designs previously thought difficult to produce can now be generated quickly and efficiently and without tooling. In the aerospace industry, weight is often tied directly to cost and is thus of great importance to any engineering design. Traditionally, the design process often involves much iteration between the designer and the analyst, where the designer submits a design to the analyst, and then the analyst completes his or her analysis and sends recommendations back to the designer. The process is repeated until a valid design meets the analysis criteria. The design is then handed to the manufacturing team which then may have additional constraints or concerns and iterations can continue. Additive manufacturing coupled with topology optimization allows the design and analysis loops and manufacturing iterations to be reduced significantly or even eliminated. The critical step is to ensure that the part will perform as simulated.
...read full post
Metals
Aerospace and Defense
Structural Analysis
Altair RADIOSS
Research Papers
Validation
3D Printing
June 03, 2016 | by DatapointLabs | views 7931
This book is intended to be a companion to the NAFEMS book, "An Introduction to the Use of Material Models in FE". It informs Finite Element Analysis users of the manner and methodologies by which materials are tested in order to calibrate material models currently implemented in various FEA programs. While the authors seek first to satisfy the basic material models outlined in the companion book, they make important extensions to FEA used in currently active areas including explicit simulation.
...read full post
Mechanical
Plastics
Rubbers
Foams
Metals
Hyperelastic
Viscoelastic
Plasticity
Rate Dependency
Yielding/Failure Analysis
Aerospace and Defense
Automotive
Biomedical
Building Materials
Consumer Products
Energy and Petroleum
Material Supplier
Furniture
Industrial Goods
CAE Vendor/Supplier
Packaging
Home Appliances
Research Laboratory
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
DIGIMAT
SOLIDWORKS
MSC.DYTRAN
MSC.MARC
MSC.NASTRAN
NX Nastran
PAM-COMFORT
PAM-CRASH
Altair RADIOSS
SIMULIA
Book Review
November 11, 2015 | by Altair Engineering | views 4303
[We] introduced the topic of injection molding process simulation and the influence of the manufacturing process on structural analysis. The strength and stiffness of a part can be inaccurately represented if the manufacturing process conditions are not properly considered. This results in a different calculation of system natural frequencies or improper estimation of the energy absorbing characteristics. We continue on this topic, extending the scope to advanced technologies available in the Altair Partner Alliance (APA) to help solve the problem of proper design validation with fiber reinforced plastics.
...read full post
Mechanical
Aerospace and Defense
Automotive
Injection Molding
Structural Analysis
Moldex3D
DIGIMAT
Papers
Altair RADIOSS
Newsletters
Validation
September 15, 2015 | by Altair Engineering | views 4834
With the growing interest in additive manufacturing in the aerospace industry, there is a desire to accurately simulate the behavior of components made by this process. The layer by layer print process appears to create a morphology that is different from that from conventional manufacturing processes. This can have dramatic impact on the material properties, which in turn, can affect how the material is modeled in simulation. We tested an additively manufactured metal part for mechanical properties and validated the material model used in a linear static simulation.
...read full post
Mechanical
Aerospace and Defense
CAE Vendor/Supplier
Structural Analysis
Altair RADIOSS
Presentations
Validation
3D Printing
July 28, 2015 | by Paul Du Bois | views 4625
FAA William J Huges Technical Center (NJ) conducts a research project to simulate failure in aeroengines and fuselages, main purpose is blade-out containment studies. This involved the implementation in LS-DYNA of a tabulated generalisation of the Johnson-Cook material law with regularisation to accommodate simulation of ductile materials.
...read full post
Mechanical
Metals
Rate Dependency
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Presentations
Validation
July 27, 2015 | by Paul Du Bois | views 4691
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA, there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have been focused on creating the plasticity portion of the model. The Tsai-Wu development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
...read full post
Mechanical
Plasticity
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Composites
Research Papers
Validation
July 27, 2015 | by Paul Du Bois | views 4303
"A general purpose orthotropic elasto-plastic computational constitutive material model has been
developed to accurately predict the response of composites subjected to high velocity impact.
The three-dimensional orthotropic elasto-plastic composite material model is being implemented
initially for solid elements in LS-DYNA® as MAT213. In order to accurately represent the
response of a composite, experimental stress-strain curves are utilized as input, allowing for a
more general material model that can be used on a variety of composite applications. The
theoretical details are discussed in a companion paper. This paper documents the
implementation, verification and validation of the material model using the T800-F3900
fiber/resin composite material."
...read full post
Mechanical
Plasticity
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Composites
Research Papers
Validation
July 27, 2015 | by Paul Du Bois | views 4300
"To assess the problem of containment after a blade-off accident in an aero-engine by numerical
simulation the FAA has instigated a research effort concerning failure prediction in a number of
relevant materials. Aluminium kicked off the program which involved an intensive testing program
providing failure data under different states of stress, different strain rates and different temperatures.
In particular split Hopkinson bars were used to perform dynamic punch tests on plates of different
thicknesses allowing to investigate the transition between different failure modes such as petaling and
plugging. Ballistic impact tests were performed at NASA GRC for the purpose of validation.
This paper focuses on the numerical simulation effort and a comparison with experimental data is
done. The simulations were performed with LS-DYNA and a tabulated version of the Johnson-Cook
material law was developed in order to increase the generality, flexibility and user-friendliness of the
material model."
...read full post
Mechanical
Metals
Yielding/Failure Analysis
Aerospace and Defense
High Speed Testing
LS-DYNA
Research Papers
Validation
July 22, 2015 | by Paul Du Bois | views 4249
Generating a LS-DYNA material model from cupon-level quasi-static experimental data, developing appropriate failure characteristics, and scaling these characteristics to mesh sizes appropriate for a variety of simulation models requires a regularization procedure. During an Investigation of an anisotropic material model for extruded aluminum, numerical accuracy issues led to unrealistic mesh regularization curves and non-physical simulation behavior. Sensitivity problems due to constitutive material behavior, small mesh sizes, single precision simulations, and simulated test velocity all contributed to these accuracy issues. Detailed analysis into the sources of innaccuracy led to the conclusion that in certain cases, double precision simulations are necesscary for accurate material characterization and mesh regularization.
...read full post
Mechanical
Metals
Yielding/Failure Analysis
Aerospace and Defense
Automotive
Extrusion
Nonlinear Material Models
LS-DYNA
Research Papers
February 13, 2014 | by DatapointLabs | views 4272
As part of Cornell University's mechanical engineering curriculum and study of classical beam theory, an aluminium beam is deformed to a specific load. Theoretical strains are calculated at certain points along the beam using beam theory, and then verified by using strain gauges placed at these points on the beam. This experiment is then extended to simulation of the same test setup in simulation software, where strains are analyzed at the same points. Discrepancies between the simulation, theory, and strain gauge results have often plagued the test, especially when incorporating more complex beam design. Through use of digital image correlation (DIC) it is possible to pinpoint some of the problem areas in the beam analysis and provide a better understanding of the localized strains that occur at any point in the deformed beam. The use of DIC provides a full field validation of simulation data, rather than a single spot check that strain gauges can provide. This validation technique helps to eliminate error that is associated with strain gauge placement and the possibility of missing strain hot spots that can arise when analyzing complex deformations or geometries.
...read full post
Plastics
Metals
Aerospace and Defense
Automotive
Biomedical
Building Materials
Consumer Products
Material Supplier
Toys/Sporting Goods
Electonics/Electrical
Industrial Goods
CAE Vendor/Supplier
Mold Maker/Designer
Structural Analysis
ANSYS
Presentations
October 29, 2013 | by DatapointLabs | views 4358
There is interest in quantifying the differences between simulation and real life experimentation. This kind of work establishes a baseline for more complex simulations bringing a notion of traceability to the practice of CAE. We present the use of digital image correlation as a way to capture strain fields from component testing and compare these to simulation. Factors that are important in ensuring fidelity between simulation and experiment will be discussed.
...read full post
Plastics
Aerospace and Defense
Automotive
Biomedical
Material Supplier
Electonics/Electrical
CAE Vendor/Supplier
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Presentations
September 15, 2013 | by DatapointLabs | views 4199
The development of material parameters for FEA is heavily reliant on precision material data that captures the stress-strain relationship with fidelity. While conventional methods involving UTMs and extensometers are quite adequate for obtaining such data on a number of materials, there are important cases where they have been known to be inadequate. The testing of composites to obtain directional properties remains a complex task because of the difficulty related to measuring these properties in different orientations. Digital Image Correlation (DIC) methods are able to capture the stress-strain relationship all the way to failure. In this paper, we combine DIC and conventional methods to measure directional properties of composites. We exploit the unique capability of DIC to retroactively place virtual strain gauges in areas of critical interest in the test specimen. Utilising an Iosipescu fixture, we measure shear properties of structured composites in a variety of orientations to compute the parameters of an orthotropic linear elastic material model. Model consistency is checked by validation using Abaqus.
...read full post
Aerospace and Defense
Nonlinear Material Models
Structural Analysis
Abaqus
Composites
SIMULIA
Research Papers
July 21, 2010 | by DatapointLabs | views 4300
The limitations of modeling materials for simulation are discussed, including lack of clarity in material model requirements, gaps between the material data and the model to which it will be fitted, issues in obtaining pertinent properties, difficulties in parameter conversion (fitting), and preparation of input files for the software being used. Means to address these limitations are presented, including understanding the model completely, measuring the correct data with precision on the right material, selecting the best model for the data and ensuring the best fit of the model to the data, validating the model against a simple experiment, and following best practices to create an error-free input file.
...read full post
Plastics
Rubbers
Foams
Aerospace and Defense
Automotive
Biomedical
Consumer Products
Material Supplier
Toys/Sporting Goods
Electonics/Electrical
Industrial Goods
Packaging
Home Appliances
Presentations
May 11, 2009 | by DatapointLabs | views 5278
High strain rate material modelling of polymers for use in crash and drop testing has been plagued by a number of problems. These include poor quality and noisy data, material models unsuited to polymer behaviour and unclear material model calibration guidelines. The modelling of polymers is thus a risky proposition with a highly variable success rate. In previous work, we tackled each of the above problems individually. In this paper, we summarize and then proceed to present a material modelling strategy that can be applied for a wide variety of polymers.
...read full post
Mechanical
Plastics
Aerospace and Defense
Automotive
Consumer Products
Material Supplier
Industrial Goods
Packaging
Home Appliances
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
MSC.DYTRAN
PAM-CRASH
Altair RADIOSS
Research Papers
July 17, 2008 | by DatapointLabs | views 4162
If you want a crash simulation involving plastics to yield useful results, it is important to model the material behavior appropriately. The high strain rates have a significant effect on the properties, and failure can be ductile or brittle in nature, depending on a number of factors.
...read full post
Plastics
Aerospace and Defense
Automotive
Biomedical
Consumer Products
Material Supplier
Toys/Sporting Goods
Industrial Goods
Packaging
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
MSC.DYTRAN
PAM-CRASH
Altair RADIOSS
Research Papers
May 16, 2008 | by DatapointLabs | views 4578
We present a perspective on material modeling as applied to mold analysis requirements. Melt-solid transitions and the case for a unified material model are discussed, along with prediction of post-filling material behavior and shrinkage, and the impact of viscous heating on flow behavior and material degradation.
...read full post
Plastics
Rubbers
Foams
Metals
Aerospace and Defense
Automotive
Biomedical
Consumer Products
Energy and Petroleum
Electonics/Electrical
Industrial Goods
CAE Vendor/Supplier
Packaging
Home Appliances
Blow Molding
Extrusion
Injection Molding
Nonlinear Material Models
Moldflow
Composites
Presentations
Gels
Oils/Lubricants
Waxes
November 27, 2007 | by DatapointLabs | views 4604
Many LS-DYNA models are used for plastics crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data.
...read full post
Metals
Aerospace and Defense
Automotive
Consumer Products
Material Supplier
Industrial Goods
Packaging
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
MSC.DYTRAN
PAM-CRASH
Presentations
November 15, 2006 | by DatapointLabs | views 4581
A considerable amount of CAE today is devoted to the simulation of non-metallic materials, many of which exhibit non-linear behavior. However, most material models to date are still based on metals theory. This places severe restrictions on the proper description of their behavior in CAE. In this paper, we describe non-linear elastic behavior and its interrelationship with plastic behavior in plastics. Special attention is given to the differentiation between visco-elastic (recoverable) strain and plastic (non-recoverable) strain. The goal of this work is to have a material model for plastics that can describe both loading and unloading behavior accurately and provide an accurate measure of damage accumulation during complex loading operations.
...read full post
Plastics
Rubbers
Aerospace and Defense
Automotive
Biomedical
Consumer Products
Material Supplier
Toys/Sporting Goods
Packaging
Home Appliances
Nonlinear Material Models
Structural Analysis
Abaqus
Research Papers
September 21, 2006 | by DatapointLabs | views 4480
The volume of plastics that are subjected to impact simulation has grown rapidly. In a previous paper, we discussed why different material models are needed to describe the highly varied behavior exhibited by these materials. In this paper, we cover the subject in more detail, exploring in depth, the nuances of commonly used LS-DYNA material models for plastics, covering important exceptions and criteria related to their use.
...read full post
Plastics
Aerospace and Defense
Automotive
Consumer Products
Material Supplier
Industrial Goods
Packaging
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
PAM-CRASH
Altair RADIOSS
Research Papers
April 28, 2005 | by DatapointLabs | views 4860
High strain-rate properties have many applications in the simulation of automotive crash and product drop testing.
These properties are difficult to measure. These difficulties result from inaccuracies in extensometry at high strain
rates due to extensometer slippage and background noise due to the sudden increase in stress at the start of the
test. To eliminate these inaccuracies we use an inferential technique that correlates strain to extension at low
strain rates and show that this can be extended to measure strain at higher strain rates
...read full post
Mechanical
Plastics
Rate Dependency
Aerospace and Defense
Automotive
Consumer Products
Material Supplier
Toys/Sporting Goods
Packaging
Home Appliances
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
MSC.DYTRAN
PAM-CRASH
Research Papers
March 13, 2001 | by DatapointLabs | views 4471
Hyperelastic models are used extensively in the finite element analysis of rubber and elastomers. These models need to be able to describe elastomeric behavior at large deformations and under different modes of deformation. In order to accomplish this daunting task, material models have been presented that can mathematically describe this behavior [1]. There are several in common use today, notably, the Mooney-Rivlin, Ogden and Arruda Boyce. Each of these has advantages that we will discuss in this article. Further, we will examine the applicability of a particular material model for a given modeling situation.
...read full post
Rubbers
Foams
Aerospace and Defense
Automotive
Biomedical
Nonlinear Material Models
Structural Analysis
Abaqus
ANSYS
SOLIDWORKS
MSC.MARC
NX Nastran
Research Papers
October 22, 1997 | by DatapointLabs | views 4824
With the recent changes in the crashworthiness requirements for US automobiles for improved safety, design engineers are being challenged to design interior trim systems comprised of polymeric materials to meet these new impact requirements. Impact analysis programs are being used increasingly by designers to gain an insight into the final part performance during the design stage. Material models play a crucial role in these design simulations by representing the response of the material to an applied stimulus. In this work, we seek to develop novel test methods to generate high speed stress-strain properties of plastics, which can be used as input to structural analysis programs...
...read full post
Plastics
Metals
Aerospace and Defense
Material Supplier
Toys/Sporting Goods
Packaging
Home Appliances
High Speed Testing
Nonlinear Material Models
Structural Analysis
Thermoforming
LS-DYNA
Abaqus
ANSYS
MSC.DYTRAN
PAM-CRASH
Research Papers