strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Pablo Cruz

Mr. Pablo Cruz is Senior Manager, Body & Passive Safety, at Applus IDIADA in Spain, where he leads comprehensive Passive Safety projects managing virtual and physical testing tools and teams for automotive OEMs. He is an expert in vehicle development, mainly focused on Passive Safety from both structural and occupant protection points of view. 

Advanced Plasticity & Fracture for Structural Car Body Metals in Crashworthiness CAE analysis: SAMP-1 plus GISSMO

This paper describes an engineering process to generate material cards for forefront crashworthiness CAE analysis that properly capture both plastic and fracture behaviour of car body structural metals. The main objective of the paper is to show that advanced plasticity approaches can be used without significantly increasing the complexity of the overall material characterization process. The paper is mainly centred in metals plastic characterization for shell elements although some important relationships with the fracture characterization will be also discussed. full post

Metals Automotive Structural Analysis LS-DYNA

Non-Isochoric Plasticity Assessment for Accurate Crashworthiness CAE Analysis. Application to SAMP-1 and SAMP-Light.

A deep understanding of advanced material plasticity and fracture is one of the cornerstones of mechanical engineering to overcome present and future challenges in the automotive industry with respect to lightweight multi-material body solutions. The correct material law selection may imply a design lightweight efficiency improvement of between 10% and 20% depending on the material, component geometry, manufacturing technology and performance requirements. The accurate implementation of the plastic behaviour becomes mandatory when material fracture is a central design parameter. In this paper, the authors propose a clear process to experimentally measure and assess how far uniaxially tested materials are from pure isochoric plastic behaviour. This process will be named Non-isochoric Plasticity Assessment (NPA). In order to illustrate the process, NPA will be applied to actual experimental results of representative automotive metals and thermoplastics. Material plastic dilation behaviour is studied. A general description is provided regarding plasticity theory concepts required for the usage of non-isochoric plasticity material laws. An approach for the validation of the experimental input data consistency for both SAMP-1 and SAMP-Light material laws is also proposed. The overall approach is finally applied and validated on an extruded aluminium and a thermoplastic showing a proper level of correlation between CAE and experimental results for shell-based FE-models. full post

Plastics Metals Automotive Structural Analysis LS-DYNA