January 17, 1994 | by DatapointLabs | views 4167
This book, edited by the Wisconsin based team of Osswald, Turng and Gramman, represents a compilation of work by several well known authors and brings together a body of knowledge that will be appreciated by injection molding professionals and students of plastics processing.
...read full post
Plastics
Injection Molding
Book Review
November 15, 2017 | by Altair Engineering | views 4163
Simulation uncertainties arise from different assumptions made in model creation. Mid-stage software validations improve confidence and optimize the design of additively manufactured aerospace components.
...read full post
Mechanical
Aerospace and Defense
Structural Analysis
Papers
Validation
3D Printing
May 26, 2010 | by DatapointLabs | views 4146
Many material models are available for crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data. In addition, we present a streamlined process to convert raw data to LS-DYNA material cards, and harmonized material datasets that allow the same raw data to be used for other crash and rate-dependent analysis software.
...read full post
Plastics
Automotive
High Speed Testing
Nonlinear Material Models
Structural Analysis
LS-DYNA
Abaqus
ANSYS
PAM-CRASH
Altair RADIOSS
Presentations
April 28, 2015 | by Paul Du Bois | views 4144
"The simulation of rubber materials is becoming increasingly
important in automotive crashworthiness simulations.
Although highly sophisticated material laws are available in
LS-DYNA to model rubber parts, the determination of material
properties can be non-trivial and time consuming. In many
applications, the rubber component is mainly loaded uniaxially
at rather high strain rates. In this paper a simplified material
model for rubber is presented allowing for a fast generation of
input data based on uniaxial static and dynamic test data."
...read full post
Mechanical
Rubbers
Hyperelastic
Rate Dependency
Automotive
High Speed Testing
LS-DYNA
Research Papers
March 10, 2010 | by Datapoint Newsletters | views 4130
European Expansion. New TestPaks Alliance Partner. Environmental Conditioning Lab.
...read full post
Autodesk Inventor
Newsletters
May 06, 2016 | by Megan Lobdell | views 4121
I found this to be a good explanation of calculating linear Drucker Prager variables for Abaqus.
...read full post
Mechanical
Plastics
Plasticity
Nonlinear Material Models
Abaqus
July 22, 2015 | by Paul Du Bois | views 4114
"During the past years polymer materials have gained enormous importance in the automotive industry. Especially
their application for interior parts to help in passenger safety load cases and their use for bumper fascias in pedestrian
safety load cases have driven the demand for much more realistic finite element simulations. For such applications
the material model 187 (i.e. MAT_SAMP-1) in LS-DYNA® has been developed.
In the present paper the authors show how the parameters for the rather general model may be adjusted to allow for
the simulation of crazing effects during plastic loading. Crazing is usually understood as inelastic deformation that
exhibits permanent volumetric deformations. Hence a material model that is intended to be applied for polymer
components that show crazing effects during the experimental study, should be capable to produce the correct volumetric
strains during the respective finite element simulation. The paper discusses the real world effect of crazing,
the ideas to capture these effect in a numerical model and exemplifies the theoretical ideas with a real world structural
component finite element model."
...read full post
Mechanical
Plastics
Rate Dependency
Automotive
High Speed Testing
LS-DYNA
Research Papers
August 14, 1997 | by DatapointLabs | views 4102
This book presents a concise and easily readable introduction to polymer behavior for design and production engineers. It seeks to explain the behavior of plastics and rubber using a materials science framework, by relating observed phenomena to changes in morphological and molecular structure. This presents a powerful way for engineers to grasp the underlying factors that make polymers the complex materials that they are. The reader is encouraged to step away from using linear-elastic metals concepts when designing with plastics. The pitfalls of such
simplifications are pointed out and guidelines are presented to aid the designer in adopting a non-linear approach.
...read full post
Plastics
Rubbers
Nonlinear Material Models
Book Review
April 28, 2015 | by Hubert Lobo | views 4094
High strain-rate properties have many applications in the simulation of automotive crash and product drop testing. These properties are difficult to measure. Previously, we described a novel inferential technique for the measurement of the properties of polycarbonate. In this paper, we demonstrate that the technique appears to work for a variety of polymers. We also show that plastics exhibit different kinds of high-strain rate behaviors
Plastics
LS-DYNA
June 09, 2015 | by PolyXtrue | views 4090
The flow in a coat-hanger die is simulated using the axisymmetric and planar elongational viscosities of a low-density polyethylene (LDPE) resin. Elongational viscosity is found to affect the velocity distribution at the die exit. Also, the predicted pressure drop in the die changed significantly when the effect of elongational viscosity was included in the simulation. However, elongational viscosity had only a minor effect on the temperature distribution in the die. Predicted pressure drop is compared with the corresponding experimental data.
...read full post
Rheology
Plastics
Extrusion
PolyXtrue
Research Papers