strengthening the materials core of manufacturing enterprises

Materials in Simulation know your materials

Sort by: Date | Views

Knowmats is an informal repository of information related to materials and simulation. The information helps simulation professionals perform best-in-class simulation with a better understanding of how materials are represented in FEA and simulation. read more...

Datapoint Newsletter: Fall '11, Volume 17.3

Expansion: New Lab Space, New TestPaks. DIGIMAT MX Reverse Engineering Update. full post

Mechanical DIGIMAT PAM-COMFORT Newsletters

Datapoint Newsletter: Summer '11, Volume 17.2

New Lab Space & Equipment full post

Mechanical Newsletters

Material Parameter Calibration Services for Abaqus Non-Linear Material Models

DatapointLabs' TestPaks (material testing + model calibration + Abaqus input decks) for rate-dependent, hyperelastic, viscoelastic, NVH, and the use of Abaqus CAE Modeler to transform raw data into material cards will be presented. A representative from Idiada will present a case study explaining the use of DatapointLabs’ material data and TestPaks for simulation. full post

Plastics Rubbers Foams Metals High Speed Testing Nonlinear Material Models Structural Analysis Abaqus Composites SIMULIA Presentations

Datapoint Newsletter: Spring '11, Volume 17.1

New TestPaks and Partner Updates. International Resellers. full post

Moldex3D PolyXtrue VEL Newsletters

Testing for Crash & Safety Simulation

The testing of materials for use in crash and safety simulations and the conversion of test data into material models is a process that is not well standardized in the industry. Consequently, CAE users face uncertainty and risk in this process that can have a negative impact on simulation quality. In this workshop, we present approaches currently used in the US for the gathering of high quality test data plus the acclaimed Matereality CAE Modeler software that is used to transform high strain-rate data into crash material cards. full post

Automotive High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS DIGIMAT SIGMASOFT NX Nastran PAM-CRASH RADIOSS Presentations

A Standardized Methodology for the DigimatMX Reverse Engineering Process 

We present a methodology for DIGIMAT users to perform the DIGIMAT MX reverse engineering process to obtain material parameter inputs for crash, elasto-plastic, creep and visco-elasticity. The injection-molding process used involves a standardized plaque geometry with fully developed flow, with test specimens taken from a specific plaque location. A standardized testing procedure is applied and the resulting DIGIMAT MX inputs are handled in a streamlined data stream, which saves time and improves the reliability of the reverse engineering process. The DIGIMAT MX reverse engineering itself can be performed as a service in collaboration with e-Xstream. This gives the user a speedy and tightly controlled process for performing complex finite element analysis with filled plastics full post

Blow Molding Extrusion High Speed Testing Injection Molding Nonlinear Material Models Structural Analysis DIGIMAT Presentations

Datapoint Newsletter: Fall '10, Volume 16.4

Composite Testing on the Rise. Matereality 4.0 Release. full post

Composites Newsletters

Datapoint Newsletter: Summer '10, Volume 16.3

DatapointLabs Joins TechNet Alliance. ANSYS Chaboche Model. CAE-INPUT Decks Now Available for ANSYS Polyflow. Foam Modeling in ANSYS. full post

Foams Metals ANSYS POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming Newsletters

Mechanical and Visco-Elastic Properties of UHMWPE for In-Vivo Applications 

Ultra-high molecular weight polyethylene (UHMWPE) is used extensively in orthopedic applications within the human body. Components made from these materials are subject to complex loading over extended periods of time. Modeling of components used in such applications depends heavily on having material data under in-vivo conditions. We present mechanical and visco-elastic properties measured in saline at 37C. Comparisons to conventionally measured properties at room temperature are made. full post

Plastics Biomedical Blow Molding Extrusion Injection Molding Nonlinear Material Models Structural Analysis Moldflow Abaqus ANSYS SIGMASOFT Papers POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming

Understanding and Coping with Material Modeling Limitations in FEA 

The limitations of modeling materials for simulation are discussed, including lack of clarity in material model requirements, gaps between the material data and the model to which it will be fitted, issues in obtaining pertinent properties, difficulties in parameter conversion (fitting), and preparation of input files for the software being used. Means to address these limitations are presented, including understanding the model completely, measuring the correct data with precision on the right material, selecting the best model for the data and ensuring the best fit of the model to the data, validating the model against a simple experiment, and following best practices to create an error-free input file. full post

Plastics Rubbers Foams Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Electonics/Electrical Industrial Goods Packaging Home Appliances Presentations