strengthening the materials core of manufacturing enterprises

Materials in Simulation know your materials

Sort by: Date | Views

Knowmats is an informal repository of information related to materials and simulation. The information helps simulation professionals perform best-in-class simulation with a better understanding of how materials are represented in FEA and simulation. read more...

Datapoint Newsletter: Spring '10, Volume 16.2

Global Expansion Update. LS-DYNA Support Update. New TestPaks Partner. Photo Documentation of Testing. full post


Material Testing and Calibration for Non-Linear ANSYS Simulations 

Material modeling has become increasing important as ANSYS software has added analysis capabilities such as non-linear CAE, crash, CFD, and manufacturing process simulation. Poor material representaion brings risk to CAE and product development. Material data needs for various material models are discussed. full post


Behavior-based Material Model Selection and Calibration of Plastics for Crash Simulation 

Many material models are available for crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data. In addition, we present a streamlined process to convert raw data to LS-DYNA material cards, and harmonized material datasets that allow the same raw data to be used for other crash and rate-dependent analysis software. full post

Plastics Automotive High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS PAM-CRASH RADIOSS Presentations

The Need for Simulation-Quality Material Data

Material testing for simulation is about understanding how to best describe a material’s behavior as input for the CAE code. Such testing requires expertise and experience beyond testing performed in a typical test laboratory; while the test instruments may be the same, the knowledge of CAE and experience with diverse materials is increasingly important. FEA software such as ANSYS is being increasingly used for non-linear simulations. We discuss how DatapointLabs' uncommon material expertise helps you avoid problems when the data is being generated these applications. full post

Research Papers

Datapoint Newsletter: Winter '10, Volume 16.1

European Expansion. New TestPaks Alliance Partner. Environmental Conditioning Lab. full post

Autodesk Inventor Newsletters

Datapoint Newsletter: Fall '09, Volume 15.2

Expanded Support for Injection Molding CAE. Direct Data Downloads to Autodesk-Moldflow and Moldex3D. Ansys Polyflow now In-House. Elongational Viscosity Data Using Peldom. NEW Injection Molding Partners. full post

Moldflow ANSYS Moldex3D SIGMASOFT POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming PolyXtrue Simpoe-Mold VISI Flow Newsletters

Characterization of Damage in Hyperelastic Materials Using Standard Test Methods and Abaqus

Over the past couple of decades, standard test methods and material models have existed for rubber-like materials. These materials were classified under the category of Hyperelastic materials. Well established physical test methods and computational procedures exist for the characterization of the material behavior in tension, compression, shear volumetric response, tear strength etc. However, effective modeling of the fracture behavior of hyperelastic materials using finite element techniques is very challenging. In this paper, we make an attempt to demonstrate the use of such standard test methods and the applicability of such test data for performing finite element analyses of complex nonlinear problems using Abaqus. Our goal is to demonstrate the effective use of standard physical test data to model multi-axial loading situations and fracture of hyperelastic materials through tear tests and indentation test simulations. full post

Rubbers Material Supplier Industrial Goods Nonlinear Material Models Structural Analysis Abaqus Research Papers

A Robust Methodology to Calibrate Crash Material Models for Polymers

High strain rate material modelling of polymers for use in crash and drop testing has been plagued by a number of problems. These include poor quality and noisy data, material models unsuited to polymer behaviour and unclear material model calibration guidelines. The modelling of polymers is thus a risky proposition with a highly variable success rate. In previous work, we tackled each of the above problems individually. In this paper, we summarize and then proceed to present a material modelling strategy that can be applied for a wide variety of polymers. full post

Mechanical Plastics Aerospace and Defense Automotive Consumer Products Material Supplier Industrial Goods Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH RADIOSS Research Papers

Datapoint Newsletter: Spring '09, Volume 15.1

DatapointLabs Featured in Technical Conferences. full post

Plastics Rubbers Foams Hyperelastic High Speed Testing Nonlinear Material Models LS-DYNA Abaqus Newsletters

Selecting Material Models for the Simulation of Foams 

We seek to lay down a framework to help us understand the different behavioral classes of foams. Following a methodology that we previously applied to plastics, we will then attempt to propose the right LS-DYNA material models that best capture these behaviours. Guidelines for model selection will be presented as well as best practices for characterization. Limitations of existing material models will be discussed. full post

Foams Automotive Consumer Products Material Supplier Packaging Home Appliances High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN Research Papers