April 29, 2015 | by Datapoint Newsletters | views 5677
Validation is Focus of DatapointLabs Technical Presentations, New Combined Loading Compression Test for Composite Materials, Matereality Software for Your Product Development Team
...read full post
Plastics
Newsletters
July 05, 2016 | by Hubert Lobo | views 5659
We will focus on our work related to the testing, modeling and validation of simulation for crash
and durability applications, including testing techniques, software tools for material parameter conversion, and
the use of a mid-stage validation process that uses standardized experiments to check the accuracy of the simulation prior to use in real-life applications. In addition, we present a short introduction to the Knowmats initiative which seeks to collect posts and links to papers from industry experts as a reference for simulation professionals.
...read full post
Mechanical
Plastics
Automotive
High Speed Testing
Nonlinear Material Models
Structural Analysis
Universal Crash
Presentations
Validation
February 10, 2014 | by Datapoint Newsletters | views 5633
10 Years of Your Material Data, Available in Your Matereality® Database. Things You Can Do with Your Matereality Personal Material Database.
...read full post
Newsletters
October 28, 2009 | by Datapoint Newsletters | views 5627
Expanded Support for Injection Molding CAE. Direct Data Downloads to Autodesk-Moldflow and Moldex3D. Ansys Polyflow now In-House. Elongational Viscosity Data Using Peldom. NEW Injection Molding Partners.
...read full post
Moldflow
ANSYS
Moldex3D
SIGMASOFT
POLYFLOW Blow Molding
POLYFLOW Extrusion
POLYFLOW Thermoforming
PolyXtrue
Simpoe-Mold
VISI Flow
Newsletters
October 28, 2014 | by DatapointLabs | views 5615
It has long been desired to quantify the accuracy of simulation results. Through developments in digital image correlation (DIC) techniques, it is now possible to quantify the deviation between simulation and real life experimentation. In this paper, three-dimension DIC measurements of deformed parts are compared to deformed surfaces predicted in simulation. Using DIC, it is possible to import deformed surface elements from simulation and map the magnitude of deviation from the measurements of the actual deformed shape.
...read full post
High Speed Testing
Nonlinear Material Models
Structural Analysis
ANSYS
Presentations
Validation
October 04, 2016 | by DatapointLabs | views 5609
Finite element analysis of plastics contains assumptions and uncertainties that can affect simulation accuracy. It is useful to quantify these effects prior to using simulation for real-life applications. A mid-stage validation uses a controlled physical test on a standardized part to compare results from simulation to physical experiment. These validations do not use real-life parts but carefully designed geometries that probe the accuracy of the simulation; the geometries themselves can be tested with boundary conditions that can be simulated correctly. In one study, a quasi-static three-point bending experiment of a standardized parallel ribbed plate is performed and simulated, using Abaqus. A comparison of the strain fields resulting from the complex stress state on the face of the ribs obtained by digital image correlation (DIC) vs. simulation is used to quantify the simulation's fidelity. In a second study, a dynamic dart impact experiment is validated using LS-Dyna probing the multi-axial deformation of a polypropylene until failure.
...read full post
Mechanical
Plastics
Automotive
Structural Analysis
LS-DYNA
Abaqus
Presentations
Validation
July 27, 2015 | by Paul Du Bois | views 5600
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA, there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have been focused on creating the plasticity portion of the model. The Tsai-Wu development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
...read full post
Mechanical
Plasticity
Yielding/Failure Analysis
Aerospace and Defense
Automotive
High Speed Testing
LS-DYNA
Composites
Research Papers
Validation
August 09, 2012 | by Datapoint Newsletters | views 5581
Inc. Magazine Features DatapointLabs. Book Release. Catalog Updates.
...read full post
Newsletters
March 20, 2015 | by Datapoint Newsletters | views 5572
DatapointLabs Celebrates 20 Years of Putting Materials into Product Design, Very High Strain-Rate Tensile Testing Up to 1000 /s, New Long Term Stress Relaxation Capability, Expanded Creep Testing Capacity
...read full post
Newsletters