Datapoint Newsletter: Spring '13, Volume 19.2
April 16, 2013 | by Datapoint Newsletters | views 4766
Validating Simulation Using Digital Image Correlation. New TestPaks® for PlanetsX Injection Molding CAE Software Added to Test Catalog.
Knowmats is an informal repository of information related to materials and simulation. The information helps simulation professionals perform best-in-class simulation with a better understanding of how materials are represented in FEA and simulation. read more...
April 16, 2013 | by Datapoint Newsletters | views 4766
Validating Simulation Using Digital Image Correlation. New TestPaks® for PlanetsX Injection Molding CAE Software Added to Test Catalog.
July 28, 2015 | by Paul Du Bois | views 4743
FAA William J Huges Technical Center (NJ) conducts a research project to simulate failure in aeroengines and fuselages, main purpose is blade-out containment studies. This involved the implementation in LS-DYNA of a tabulated generalisation of the Johnson-Cook material law with regularisation to accommodate simulation of ductile materials.
Mechanical Metals Rate Dependency Yielding/Failure Analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Presentations Validation
July 14, 1993 | by DatapointLabs | views 4725
The primary purpose of this book is to describe the application of modern engineering analysis techniques to the design of components fabricated from thermoplastic materials. The book, the first of its kind to address the unique behavioral characteristics of thermoplastics and their impact on finite element analysis (FEA), points out the need for plastics designers to move on to nonlinear analysis in order to truly simulate the behavior of plastic parts. According to the authors, the easy availability of high speed computing and efficient analysis codes means that it is no longer necessary nor cost-effective to restrict oneself to simple linear analyses.
Plastics Nonlinear Material Models Structural Analysis Thermoforming Book Review
October 28, 2009 | by Datapoint Newsletters | views 4722
Expanded Support for Injection Molding CAE. Direct Data Downloads to Autodesk-Moldflow and Moldex3D. Ansys Polyflow now In-House. Elongational Viscosity Data Using Peldom. NEW Injection Molding Partners.
Moldflow ANSYS Moldex3D SIGMASOFT POLYFLOW Blow Molding POLYFLOW Extrusion POLYFLOW Thermoforming PolyXtrue Simpoe-Mold VISI Flow Newsletters
November 27, 2007 | by DatapointLabs | views 4719
Many LS-DYNA models are used for plastics crash simulation. However, common models are not designed for plastics. We present best practices developed for adapting common models to plastics, as well as best testing protocols to generate clean, accurate rate-dependent data.
Metals Aerospace and Defense Automotive Consumer Products Material Supplier Industrial Goods Packaging High Speed Testing Nonlinear Material Models Structural Analysis LS-DYNA Abaqus ANSYS MSC.DYTRAN PAM-CRASH Presentations
May 16, 2008 | by DatapointLabs | views 4697
We present a perspective on material modeling as applied to mold analysis requirements. Melt-solid transitions and the case for a unified material model are discussed, along with prediction of post-filling material behavior and shrinkage, and the impact of viscous heating on flow behavior and material degradation.
Plastics Rubbers Foams Metals Aerospace and Defense Automotive Biomedical Consumer Products Energy and Petroleum Electonics/Electrical Industrial Goods CAE Vendor/Supplier Packaging Home Appliances Blow Molding Extrusion Injection Molding Nonlinear Material Models Moldflow Composites Presentations Gels Oils/Lubricants Waxes
November 15, 2006 | by DatapointLabs | views 4690
A considerable amount of CAE today is devoted to the simulation of non-metallic materials, many of which exhibit non-linear behavior. However, most material models to date are still based on metals theory. This places severe restrictions on the proper description of their behavior in CAE. In this paper, we describe non-linear elastic behavior and its interrelationship with plastic behavior in plastics. Special attention is given to the differentiation between visco-elastic (recoverable) strain and plastic (non-recoverable) strain. The goal of this work is to have a material model for plastics that can describe both loading and unloading behavior accurately and provide an accurate measure of damage accumulation during complex loading operations.
Plastics Rubbers Aerospace and Defense Automotive Biomedical Consumer Products Material Supplier Toys/Sporting Goods Packaging Home Appliances Nonlinear Material Models Structural Analysis Abaqus Research Papers
November 21, 2014 | by DatapointLabs | views 4656
Thermoplastic materials are one of the largest categories of materials to be injection molded. Simulation of the injection molding process requires sophisticated and exact material properties to be measured. This presentation will discuss the testing required to characterize a material for use in SIGMASOFT, as well as the significance of material model parameters. Differences in testing methodology for amorphous and semi-crystalline polymers will be covered, along with step-by-step implementation into the software to produce a successful injection molding simulation simulation.
Plastics Electonics/Electrical Injection Molding Nonlinear Material Models Structural Analysis SIGMASOFT Presentations
May 08, 2011 | by DatapointLabs | views 4642
DatapointLabs' TestPaks (material testing + model calibration + Abaqus input decks) for rate-dependent, hyperelastic, viscoelastic, NVH, and the use of Abaqus CAE Modeler to transform raw data into material cards will be presented. A representative from Idiada will present a case study explaining the use of DatapointLabs’ material data and TestPaks for simulation.
Plastics Rubbers Foams Metals High Speed Testing Nonlinear Material Models Structural Analysis Abaqus Composites SIMULIA Presentations
July 22, 2015 | by Paul Du Bois | views 4639
"Simulation of rubber-like materials is usually based on hyperelasticity. If strain-rate dependency has to be considered viscous dampers are added to the rheological model. A disadvantage of such a description is timeconsuming parameter identification associated with the damping constants. In this paper, a tabulated formulation is presented which allows fast generation of input data based on uniaxial static and dynamic tensile tests at different strain rates. Unloading, i.e. forming of a hysteresis, can also be modeled easily based on a damage formulation. We show the theoretical background and algorithmic setup of our model which has been implemented in the explicit solver LS-DYNA [1]-[3]. Apart from purely numerical examples, the validation of a soft and a hard rubber under loading and subsequent unloading at different strain rates is shown."
Mechanical Rubbers Hyperelastic Rate Dependency Yielding/Failure Analysis Automotive High Speed Testing LS-DYNA Research Papers