strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Materials in Simulation know your materials

Sort by: Date | Views

Knowmats is an informal repository of information related to materials and simulation. The information helps simulation professionals perform best-in-class simulation with a better understanding of how materials are represented in FEA and simulation. read more...


Caratterizzazione di materiali plastici: misure locali di deformazione per la simulazione ad elementi finiti di problemi di impatto

Questo articolo si propone di illustrare l’importanza dell’utilizzo di metodi per la misura delle proprietà locali del materiale per determinarne la legge di comportamento. Vengono di seguito presentati alcuni esempi che evidenziano quanto più accurate e realistiche siano le simulazioni numeriche di test di trazione ad alta velocità su provini di poliolefine, quando vengano utilizzate proprietà dei materiali rilevate con misure locali, utilizzando metodi ottici. La disponibilità di misure locali e più accurate evidenzia come sia necessario che nei codici di calcolo commerciali vengano implementate delle leggi di materiale più sofisticate di quelle disponibili attualmente, che sono state per lo più originariamente sviluppate per materiali metallici, e dunque non riescono sempre a predire correttamente il comportamento dei componenti in materiali polimerici.

...read full post

Mechanical Plastics Rate Dependency Automotive High Speed Testing LS-DYNA Research Papers


Creep modelling of Polyolefins using artificial neural networks

Notwithstanding the increasing demand for polymeric materials in an extraordinary variety of applications, the engineers have often only limited tools suitable for the design of parts made of polymers, both in terms of mathematical models and reliable material data, which together constitute the basis for a finite-elements based design. Within this context, creep modelling constitutes a clear example of the needs for a more refined approach. An accurate prediction of the creep behaviour of polymers would definitely lead to a more refined design and thus to a better performance of the polymeric components. However, a limited number of models is available within the f.e. codes, and when the model complexity increases, it becomes sometimes difficult fitting the models parameters to the experimental data. In order to predict the polymer creep behaviour, this paper proposes a solution based on artificial neural networks, where the experimental creep curves are used to determine the parameters of a neural network which is then simply implemented in an Abaqus user subroutine. This allows to avoid the implementation of a complex material law and also the difficulties related to match the experimental data to the model parameters, keeping easily into account the dependence on stress and temperature. After a discussion of the selection of the appropriate network and its parameters, an example of the application of this approach to polyolefins in a simplified test case is presented.

...read full post

Mechanical Plastics Automotive Biomedical Structural Analysis Abaqus Research Papers Validation


Enhanced Failure Prediction in Sheet Metal Forming Simulations through Coupling of LS-DYNA and Algorithm Crach

"In sheet-metal-forming the forming limit curve (FLC) is used for ductile sheets to predict fracture in deep drawing. However the use of the FLC is limited to linear strain paths. The initial FLC cannot be used in a complex nonlinear strain history of a deep drawing process or a successive stamp and crash process including a significant change in strain rate. The CRACH software has been developed to predict the forming limit of sheets for nonlinear strain paths [1]. It has been validated to predict instability for bilinear strain paths with static loading in the first path and dynamic loading in the second path for mild steels [2]. As the postprocessing of strain paths from single finite elements in CRACH is not economic for industrial applications MATFEM initiated a project to couple CRACH directly with FEM-Code LS-DYNA using a userdefined material model. This allows a prediction of possible failure during the simulation for all elements with respect to their complete strain history. A special strategy has been developed to include CRACH without extensive increase in total CPU time. The developed interface to LS-DYNA allows also the implementation of other failure criteria demanding the history of deformation like for example a tensorial fracture criterion. In order to test the reliability of the calculated safety factor experimental tests for bilinear strain paths have been simulated [2]. In this case the experimental and numerical investigations have been made on two-stage forming processes (static in the 1st stage and both static/dynamic in the 2nd stage) . The static-static case should simulate a stamping process with bilinear strain path. The static-dynamic case should simulate a successive stamp and crash process. The simulation of a complex deep drawing problem including areas with significantly nonlinear strain paths has been simulated with LS-DYNA/CRACH-coupling. It can be shown that the prediction of CRACH can differ significantely from a “standard” prediction based on the initial FLC. The coupling of LS-DYNA and CRACH showed the potential to predict possible fracture in deep drawing and crash loading at an early design stage and allowed to optimise geometry and material quality to significantly reduce later problems in real components."

...read full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


A Systematic Approach to Model Metals, Compact Polymers and Structural Foams in Crash Simulations with a Modular User Material

"Today the automotive industry is faced with the demand to build light fuel-efficient vehicles while optimizing its crashworthiness and stiffness. A wide variety of new metallic and polymeric materials have been introduced to account for these increased requirements. Numerical analysis can significantly support this process if the analysis is really predictive. Within the numerical model a correct characterization of the material behaviour – including elasto-viscoplastic behaviour and failure - is substantial. The particular behaviour of each material group must be covered by the material model. The user material model MF GenYld+CrachFEM allows for a modular combination of phenomenological models (yield locus, strain hardening, damage evolution, criteria for fracture initiation) to give an adequate representation of technical materials. This material model can be linked to LS-DYNA when using the explicit-dynamic time integration scheme. This paper gives an overview on the material characterization of ultra high strength steels (with focus on failure prediction), non-reinforced polymers (with focus on anisotropic hardening of polymers), and structural foams (with focus on compressibility and stress dependent damage evolution) with respect to crash simulation. It will be shown that a comprehensive material model - including damage and failure behaviour - enables a predictive simulation without iterative calibration of material parameters. A testing programme has been done for each material group in order to allow a fitting of the parameters of the material model first. In a second step different component tests have been carried out, which were part of a systematic procedure to validate the appropriate predictions of the crash behaviour with LS-Dyna and user material MF_GenYld+CrachFEM for each material group."

...read full post

Mechanical Plastics Foams Metals Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


Improved Plasticity and Failure models for Extruded MgProfiles in Crash Simulations

"The Crash Simulation of Magnesium Structures with Finite Element Methods demands the use of suitable material and failure models. An associated plasticity model describing the complex asymmetric yield behaviour in tension and compression of Mg extrusions has been developed during the InMaK-project (Innovative Magnesium Compound Structures for Automobile Frames) supported by the German Federal Ministry for Education and Research (BMBF). Differences to the material model 124 in LS-DYNA are exposed. In order to describe the failure behaviour of Mg extrusions under multiaxial loading in FEM crash simulation this constitutive model has been combined with a fracture model for ductile and shear fracture. The fracture model has been added to the user defined constitutive magnesium model in LS-DYNA. The experimental investigations carried out on model components are compared with numerical derived results. Experimental methods for fracture parameter evaluation are shown and general aspects of metal failure due to fracture as well as different modelling techniques are discussed."

...read full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Automotive High Speed Testing LS-DYNA Research Papers


Development, implementation and Validation of 3-D Failure Model for Aluminium 2024 for High Speed Impact Applications

FAA William J Huges Technical Center (NJ) conducts a research project to simulate failure in aeroengines and fuselages, main purpose is blade-out containment studies. This involved the implementation in LS-DYNA of a tabulated generalisation of the Johnson-Cook material law with regularisation to accommodate simulation of ductile materials.

...read full post

Mechanical Metals Rate Dependency Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Presentations Validation


Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA, there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have been focused on creating the plasticity portion of the model. The Tsai-Wu development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

...read full post

Mechanical Plasticity Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Composites Research Papers Validation


Verification and Validation of a Three-Dimensional Generalized Composite Material Model

"A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to accurately predict the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA® as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and validation of the material model using the T800-F3900 fiber/resin composite material."

...read full post

Mechanical Plasticity Yielding/Failure analysis Aerospace and Defense Automotive High Speed Testing LS-DYNA Composites Research Papers Validation


A Material Model for Transversely Anisotropic Crushable Foams in LS-DYNA

"Recently new materials were introduced to enhance different aspects of automotive safety while minimizing the weight added to the vehicle. Such foams are no longer isotropic but typically show a preferred strong direction due to their manufacturing process. Different stress/ strain curves are obtained from material testing in different directions. A new material model was added to the LS-DYNA code in order to allow a correct numerical simulation of such materials. Ease-of-use was a primary concern in the development of this user-subroutine: we required stress/ strain curves from material testing to be directly usable as input parameters for the numerical model without conversion. The user-subroutine is implemented as MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM, Mat law 142 in LS-DYNA Version 960-1106. In this paper we summarize the background of the material law and illustrate some applications in the field of interior head-impact. The obvious advantage of incorporating such detail in the simulation lies in the numerical assessment of impacts that are slightly offset with respect to the foam’s primary strength direction."

...read full post

Mechanical Foams Rate Dependency Automotive High Speed Testing LS-DYNA Research Papers


Nonlinear viscoelastic modeling for foams

Lightweight design is one of the major principles in automotive engineering and has made polymer materials to inherent parts of modern cars. In addition to their lightweight thermoplastics, elastomers, fabric and composites also incur important functions in passive safety. In the age of virtual prototyping, assuring these functions requires the accurate modeling of the mechanical behavior of each component. Due to their molecular structure, polymer materials often show viscoelastic characteristics such as creep, relaxation and recovery. However, considering the general state of the art in crash simulation, the viscoelastic characteristics are mainly neglected or replaced by viscoplastic or hyperelastic and strain rate dependent material models. This is either due to the available material models that are often restricted to linear viscoelasticity and thus cannot model the experimental data or due to the time consuming parameter identification. In this study, a nonlinear viscoelastic material model for foams is developed and implemented as a user material subroutine in LS-DYNA. The material response consists of an equilibrium and a non-equilibrium part. The first one is modeled with a hyperelastic formulation based on the work of Chang [8] and formerly implemented as *MAT_FU_CHANG_FOAM in LS-DYNA (*MAT_083). The second one includes the nonlinear viscoelastic behavior following the multiple integral theory by Green and Rivlin [9]. The polyurethane foam Confor CF-45 used as part of the legform impactor in pedestrian safety was chosen for its highly nonlinear viscoelastic properties to test the presented approach. The investigation shows the ability of the method to reliably simulate some important nonlinear viscoelastic phenomena such as saturation.

...read full post

Mechanical Foams Visco-elastic Automotive Nonlinear Material Models LS-DYNA Research Papers