strengthening the materials core of manufacturing enterprises
DatapointLabs is now part of Applus laboratories

Materials in Simulation know your materials

Sort by: Date | Views

Knowmats is an informal repository of information related to materials and simulation. The information helps simulation professionals perform best-in-class simulation with a better understanding of how materials are represented in FEA and simulation. read more...


Thermoplastic Material Testing for Use in SIGMASOFT

Thermoplastic materials are one of the largest categories of materials to be injection molded. Simulation of the injection molding process requires sophisticated and exact material properties to be measured. This presentation will discuss the testing required to characterize a material for use in SIGMASOFT, as well as the significance of material model parameters. Differences in testing methodology for amorphous and semi-crystalline polymers will be covered, along with step-by-step implementation into the software to produce a successful injection molding simulation simulation.

...read full post

Plastics Electonics/Electrical Injection Molding Nonlinear Material Models Structural Analysis SIGMASOFT Presentations


A Simplified Approach for Strain-Rate Dependent Hyperelastic Materials with Damage

"Simulation of rubber-like materials is usually based on hyperelasticity. If strain-rate dependency has to be considered viscous dampers are added to the rheological model. A disadvantage of such a description is timeconsuming parameter identification associated with the damping constants. In this paper, a tabulated formulation is presented which allows fast generation of input data based on uniaxial static and dynamic tensile tests at different strain rates. Unloading, i.e. forming of a hysteresis, can also be modeled easily based on a damage formulation. We show the theoretical background and algorithmic setup of our model which has been implemented in the explicit solver LS-DYNA [1]-[3]. Apart from purely numerical examples, the validation of a soft and a hard rubber under loading and subsequent unloading at different strain rates is shown."

...read full post

Mechanical Rubbers Hyperelastic Rate Dependency Yielding/Failure Analysis Automotive High Speed Testing LS-DYNA Research Papers


Datapoint Newsletter: Spring '09, Volume 15.1

DatapointLabs Featured in Technical Conferences.

...read full post

Plastics Rubbers Foams Hyperelastic High Speed Testing Nonlinear Material Models LS-DYNA Abaqus Newsletters


Datapoint Newsletter: Summer '11, Volume 17.2

New Lab Space & Equipment

...read full post

Mechanical Newsletters


Datapoint Newsletter: Spring '12, Volume 18.2

Technical Note: On the Conditioning of Plastics Prior to Testing. Expansion of Conditioning Capabilities.

...read full post

Newsletters


Datapoint Newsletter: Fall '08, Volume 14.4

A Makeover for DatapointLabs.

...read full post

Rheology Thermal Mechanical Newsletters


Datapoint Newsletter: Summer '08, Volume 14.2

New Tests and TestPaks. New Presentations On-line.

...read full post

LS-DYNA Altair RADIOSS VISI Flow Newsletters Validation


Datapoint Newsletter: Fall '11, Volume 17.3

Expansion: New Lab Space, New TestPaks. DIGIMAT MX Reverse Engineering Update.

...read full post

Mechanical DIGIMAT PAM-COMFORT Newsletters


A Material Model for Transversely Anisotropic Crushable Foams in LS-DYNA

"Recently new materials were introduced to enhance different aspects of automotive safety while minimizing the weight added to the vehicle. Such foams are no longer isotropic but typically show a preferred strong direction due to their manufacturing process. Different stress/ strain curves are obtained from material testing in different directions. A new material model was added to the LS-DYNA code in order to allow a correct numerical simulation of such materials. Ease-of-use was a primary concern in the development of this user-subroutine: we required stress/ strain curves from material testing to be directly usable as input parameters for the numerical model without conversion. The user-subroutine is implemented as MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM, Mat law 142 in LS-DYNA Version 960-1106. In this paper we summarize the background of the material law and illustrate some applications in the field of interior head-impact. The obvious advantage of incorporating such detail in the simulation lies in the numerical assessment of impacts that are slightly offset with respect to the foam’s primary strength direction."

...read full post

Mechanical Foams Rate Dependency Automotive High Speed Testing LS-DYNA Research Papers


Practical Issues in the Development and Implementation of Hyperelastic Models

Hyperelastic models are used extensively in the finite element analysis of rubber and elastomers. These models need to be able to describe elastomeric behavior at large deformations and under different modes of deformation. In order to accomplish this daunting task, material models have been presented that can mathematically describe this behavior [1]. There are several in common use today, notably, the Mooney-Rivlin, Ogden and Arruda Boyce. Each of these has advantages that we will discuss in this article. Further, we will examine the applicability of a particular material model for a given modeling situation.

...read full post

Rubbers Foams Aerospace and Defense Automotive Biomedical Nonlinear Material Models Structural Analysis Abaqus ANSYS SOLIDWORKS MSC.MARC NX Nastran Research Papers